We establish multiplicity and nonexistence of solutions to the quasilinear problem -Δpv=vq-2vinΩ,v=0on∂Ω,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} -\Delta _{p}v=\left| v\right| ^{q-2}v\,\,\text {in}\,\,\Omega ,\qquad v=0\text { on }{\partial {\Omega }}, \end{aligned}$$\end{document}in some bounded smooth domains Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^{N}$$\end{document}, for 1<p<N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<N$$\end{document} and some supercritical exponents q>p∗:=NpN-p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q>p^{*}:=\frac{Np}{N-p}$$\end{document}. Multiplicity is established in domains arising from the Hopf maps. We show that, after a suitable change of metric, these maps become p-harmonic morphisms, i.e., they preserve the p-Laplace operator up to a factor. We use them to reduce the supercritical problem to an anisotropic quasilinear critical problem in a domain of lower dimension.