Rigidity of Riemannian embeddings of discrete metric spaces

被引:0
|
作者
Matan Eilat
Bo’az Klartag
机构
[1] Weizmann Institute of Science,Department of Mathematics
来源
Inventiones mathematicae | 2021年 / 226卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complete, connected Riemannian surface and suppose that S⊂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}\subset M$$\end{document} is a discrete subset. What can we learn about M from the knowledge of all Riemannian distances between pairs of points of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}? We prove that if the distances in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} correspond to the distances in a 2-dimensional lattice, or more generally in an arbitrary net in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, then M is isometric to the Euclidean plane. We thus find that Riemannian embeddings of certain discrete metric spaces are rather rigid. A corollary is that a subset of Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^3$$\end{document} that strictly contains Z2×{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2 \times \{ 0 \}$$\end{document} cannot be isometrically embedded in any complete Riemannian surface.
引用
收藏
页码:349 / 391
页数:42
相关论文
共 50 条
  • [1] Rigidity of Riemannian embeddings of discrete metric spaces
    Eilat, Matan
    Klartag, Bo'az
    INVENTIONES MATHEMATICAE, 2021, 226 (01) : 349 - 391
  • [2] EQUIVARIANT EMBEDDINGS OF RIEMANNIAN HOMOGENEOUS SPACES
    MOORE, JD
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (03) : 271 - 279
  • [3] Local Embeddings of Metric Spaces
    Abraham, Ittai
    Bartal, Yair
    Neiman, Ofer
    ALGORITHMICA, 2015, 72 (02) : 539 - 606
  • [4] Local Embeddings of Metric Spaces
    Abraham, Ittai
    Bartal, Yair
    Neiman, Ofer
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 631 - 640
  • [5] On embeddings of finite metric spaces
    Sagi, Gabor
    Nyiri, David
    2015 IEEE 13th International Scientific Conference on Informatics, 2015, : 227 - 231
  • [6] Local Embeddings of Metric Spaces
    Ittai Abraham
    Yair Bartal
    Ofer Neiman
    Algorithmica, 2015, 72 : 539 - 606
  • [7] ENTROPY RIGIDITY FOR METRIC SPACES
    Lim, Seonhee
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (01): : 73 - 86
  • [8] RIGIDITY OF SUBSETS IN METRIC SPACES
    JANOS, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A343 - A344
  • [9] EMBEDDINGS OF PROPER METRIC SPACES INTO BANACH SPACES
    Baudier, Florent
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 209 - 223
  • [10] Coarse embeddings of metric spaces into Banach spaces
    Nowak, PW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2589 - 2596