Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae

被引:0
|
作者
Claudia Almaguer
Edward Fisher
Jana Patton-Vogt
机构
[1] Duquesne University,Department of Biological Sciences
来源
Current Genetics | 2006年 / 50卷
关键词
Permease; Yeast; Phospholipid metabolites; Transport; Phosphate; Glycerophosphodiesters;
D O I
暂无
中图分类号
学科分类号
摘要
Glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) are the products of phospholipase-B mediated deacylation of phosphatidylinositol and phosphatidylcholine, respectively. GroPIns and GroPCho are transported across the Saccharomyces cerevisiae plasma membrane into the cell via the transporter encoded by GIT1. Previous studies have shown that GIT1 expression is regulated by inorganic phosphate (Pi) availability through the transcription factors Pho2p and Pho4p. We now report that posttranscriptional mechanisms also regulate Git1p activity in response to Pi availability. Mutations that inhibit endocytosis and vacuolar proteolysis inhibit Git1p degradation, indicating that Git1p downregulation involves internalization and subsequent degradation in the vacuole. Similar to the effect seen with Pi, provision of cells with high levels of the Git1p substrates, GroPIns and GroPCho, posttranscriptionally downregulates Git1p activity. Unlike Pi, high levels of GroPCho and GroPIns do not repress GIT1 promoter-driven reporter gene activity. These results indicate that Git1p transport activity is regulated at multiple levels by Pi availability. In addition, the results indicate that the Git1p substrates (and alternate phosphate sources) GroPIns and GroPCho behave distinctly from Pi in their ability to affect GIT1 expression.
引用
收藏
页码:367 / 375
页数:8
相关论文
共 50 条
  • [31] MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae
    Kevin L Dietzel
    Vidhya Ramakrishnan
    Erin E Murphy
    Linda F Bisson
    BMC Genetics, 13
  • [32] Neurofibromin Homologs Ira1 and Ira2 Affect Glycerophosphoinositol Production and Transport in Saccharomyces cerevisiae
    Bishop, Andrew C.
    Surlow, Beth A.
    Anand, Puneet
    Hofer, Katherine
    Henkel, Matthew
    Patton-Vogt, Jana
    EUKARYOTIC CELL, 2009, 8 (11) : 1808 - 1811
  • [33] A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae
    Petra Heymann
    Joachim F. Ernst
    Günther Winkelmann
    Biometals, 2000, 13 : 65 - 72
  • [34] A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae
    Heymann, P
    Ernst, JF
    Winkelmann, G
    BIOMETALS, 2000, 13 (01) : 65 - 72
  • [35] Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae
    Stolz, J
    Vielreicher, M
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (21) : 18990 - 18996
  • [36] Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae
    de Boer, M
    Nielsen, PS
    Bebelman, JP
    van Heerikhuizen, H
    Andersen, HA
    Planta, RJ
    NUCLEIC ACIDS RESEARCH, 2000, 28 (04) : 974 - 981
  • [37] Transcriptional regulation of CLS1 in Saccharomyces cerevisiae
    Jiang, F
    Greenberg, ML
    FASEB JOURNAL, 1998, 12 (08): : A1395 - A1395
  • [38] Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1
    Yuan, Lixing
    Loque, Dominique
    Ye, Fanghua
    Frommer, Wolf B.
    von Wiren, Nicolaus
    PLANT PHYSIOLOGY, 2007, 143 (02) : 732 - 744
  • [39] Alpha-arrestins Aly1 and Aly2 regulate trafficking of the glycerophosphoinositol transporter, Git1 and impact lipid homeostasis in cells
    Bowman, R. W.
    Hall, M.
    ODonnell, A. F.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [40] Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae
    de Boer, M
    Bebelman, JP
    Gonçalves, PM
    Maat, J
    van Heerikhuizen, H
    Planta, RJ
    MOLECULAR MICROBIOLOGY, 1998, 30 (03) : 603 - 613