Subset sums and block designs in a finite vector space

被引:0
|
作者
Marco Pavone
机构
[1] Università degli Studi di Palermo,Dipartimento di Ingegneria
来源
关键词
Block design; Additive design; Finite vector space; Subset sums; Permutations of subset sums; Automorphism group; Primary 05B05; 05B25; 51E05; 11B75; Secondary 11P70; 11B13; 05A05; 05A18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we settle the question of whether a finite-dimensional vector space V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {V}}}$$\end{document} over Fp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p,$$\end{document} with p an odd prime, and the family of all the k-sets of elements of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} summing up to a given element x,  form a 1-(v,k,λ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda _1)$$\end{document} or a 2-(v,k,λ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda _2)$$\end{document} block design, and, in either case, we find a closed form for λi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _i$$\end{document} and characterize the automorphism group. The question is discussed also in the case where the elements of the k-sets are required to be all nonzero, as the two cases happen to be intrinsically inseparable. The “twin case” p=2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,$$\end{document} which has strict connections with coding theory, was completely discussed in a recent paper by G. Falcone and the present author.
引用
收藏
页码:2585 / 2603
页数:18
相关论文
共 50 条
  • [21] Vector space partitions and designs PartII - constructions
    Jha, Vikram
    Johnson, Norman L.
    [J]. NOTE DI MATEMATICA, 2010, 30 (02): : 101 - 105
  • [22] On vector space partitions and uniformly resolvable designs
    A. D. Blinco
    S. I. El-Zanati
    G. F. Seelinger
    P. A. Sissokho
    L. E. Spence
    C. Vanden Eynden
    [J]. Designs, Codes and Cryptography, 2008, 48 : 69 - 77
  • [23] On vector space partitions and uniformly resolvable designs
    Blinco, A. D.
    El-Zanati, S. I.
    Seelinger, G. F.
    Sissokho, P. A.
    Spence, L. E.
    Vanden Eynden, C.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) : 69 - 77
  • [24] ALGORITHM FOR OPTIMAL DESIGNS ON A FINITE DESIGN SPACE
    SILVEY, SD
    TITTERINGTON, DM
    TORSNEY, B
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1978, 7 (14): : 1379 - 1389
  • [25] The affinity of a permutation of a finite vector space
    Clark, W. Edwin
    Hou, Xiang-dong
    Mihailovs, Alec
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) : 80 - 112
  • [26] SUMS OF QUADRATIC ENDOMORPHISMS OF AN INFINITE-DIMENSIONAL VECTOR SPACE
    Pazzis, Clement De Seguins
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (02) : 437 - 447
  • [27] The inverse problem on subset sums
    Chen, Yong-Gao
    Wu, Jian-Dong
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (05) : 841 - 845
  • [28] Subset sums modulo a prime
    Nguyen, Hoi H.
    Szemeredi, Endre
    Vu, Van H.
    [J]. ACTA ARITHMETICA, 2008, 131 (04) : 303 - 316
  • [29] Subset sums and coding theory
    Cohen, G
    Zémor, G
    [J]. ASTERISQUE, 1999, (258) : 327 - 339
  • [30] LARGE SIGNED SUBSET SUMS
    Ambrus, Gergely
    Gonzalez Merino, Bernardo
    [J]. MATHEMATIKA, 2021, 67 (03) : 579 - 595