Subset sums and block designs in a finite vector space

被引:0
|
作者
Marco Pavone
机构
[1] Università degli Studi di Palermo,Dipartimento di Ingegneria
来源
关键词
Block design; Additive design; Finite vector space; Subset sums; Permutations of subset sums; Automorphism group; Primary 05B05; 05B25; 51E05; 11B75; Secondary 11P70; 11B13; 05A05; 05A18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we settle the question of whether a finite-dimensional vector space V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {V}}}$$\end{document} over Fp,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_p,$$\end{document} with p an odd prime, and the family of all the k-sets of elements of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} summing up to a given element x,  form a 1-(v,k,λ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda _1)$$\end{document} or a 2-(v,k,λ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda _2)$$\end{document} block design, and, in either case, we find a closed form for λi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _i$$\end{document} and characterize the automorphism group. The question is discussed also in the case where the elements of the k-sets are required to be all nonzero, as the two cases happen to be intrinsically inseparable. The “twin case” p=2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2,$$\end{document} which has strict connections with coding theory, was completely discussed in a recent paper by G. Falcone and the present author.
引用
收藏
页码:2585 / 2603
页数:18
相关论文
共 50 条
  • [1] Subset sums and block designs in a finite vector space
    Pavone, Marco
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2585 - 2603
  • [2] Spanning subset sums for finite Abelian groups
    Griggs, JR
    [J]. DISCRETE MATHEMATICS, 2001, 229 (1-3) : 89 - 99
  • [3] Covering a finite Abelian group by subset sums
    Gao, W
    Hamidoune, YO
    Lladó, A
    Serra, O
    [J]. COMBINATORICA, 2003, 23 (04) : 599 - 611
  • [4] Counting subset sums of finite abelian groups
    Li, Jiyou
    Wan, Daqing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 170 - 182
  • [5] Covering a Finite Abelian Group by Subset Sums
    W. Gao
    Y. O. Hamidoune
    A. Lladó*
    O. Serra†
    [J]. Combinatorica, 2003, 23 : 599 - 611
  • [6] Moment subset sums over finite fields
    Lai, Tim
    Marino, Alicia
    Robinson, Angela
    Wan, Daqing
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
  • [7] A conjecture on subset sums of a finite set of positive integers
    Guot, Shu-Guang
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 161 - 165
  • [8] Subset sums of quadratic residues over finite fields
    Wang, Weiqiong
    Wang, Li-Ping
    Zhou, Haiyan
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 106 - 122
  • [9] Pooling designs with surprisingly high degree of error correction in a finite vector space
    Guo, Jun
    Wang, Kaishun
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2172 - 2176
  • [10] On sets of vectors of a finite vector space in which every subset of basis size is a basis
    Ball, Simeon
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (03) : 733 - 748