K-Factors and Hamilton Cycles in Graphs

被引:0
|
作者
Zhi Guo Wang
Zhen Jiang Zhao
机构
[1] He'nan University,College of Mathematics and Information Sciences
关键词
-factor; 2-connected graph; Hamilton cycle; 05C38; 05C45;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss k-factors and Hamiltonian Graphs in graph theory. We prove a general version of the conjecture by R. Haggkvist; as a result, we prove two extended versions of two well-known theorems due to O. Ore and B. Jachson, respectively.
引用
收藏
页码:309 / 312
页数:3
相关论文
共 50 条
  • [31] Hamilton cycles and eigenvalues of graphs
    van, den Heuvel, J.
    Linear Algebra and Its Applications, 1995, 226-228
  • [32] Collapsible graphs and Hamilton cycles of line graphs
    Li, Xiangwen
    Xiong, Yan
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 132 - 142
  • [33] Hamilton cycles in random graphs and directed graphs
    Cooper, C
    Frieze, A
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 369 - 401
  • [34] ONE-FACTORS AND K-FACTORS
    SAITO, A
    DISCRETE MATHEMATICS, 1991, 91 (03) : 323 - 326
  • [35] K-FACTORS FOR CRACKS IN SHELLS
    LIETZAU, HP
    GROSS, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (04): : T198 - T201
  • [36] On the number of edge-disjoint one factors and the existence of k-factors in complete multipartite graphs
    Hoffman, DG
    Rodger, CA
    DISCRETE MATHEMATICS, 1996, 160 (1-3) : 177 - 187
  • [37] K-factors for braced frames
    CheongSiatMoy, F
    ENGINEERING STRUCTURES, 1997, 19 (09) : 760 - 763
  • [38] TOUGHNESS AND THE EXISTENCE OF K-FACTORS
    ENOMOTO, H
    JACKSON, B
    KATERINIS, P
    SAITO, A
    JOURNAL OF GRAPH THEORY, 1985, 9 (01) : 87 - 95
  • [39] Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs
    Nenadov, Rajko
    Skoric, Nemanja
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (01) : 187 - 208
  • [40] DIRECTED HAMILTON CYCLES IN DIGRAPHS AND MATCHING ALTERNATING HAMILTON CYCLES IN BIPARTITE GRAPHS
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    Wen, Xuelian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 274 - 289