Rescaled Lotka–Volterra Models Converge to Super-Stable Processes

被引:0
|
作者
Hui He
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
来源
关键词
Super-stable process; Lotka–Volterra; Voter model; Domain of attraction; Stable law; Stable random walk; 60K35; 60G57; 60F17; 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, it has been shown that stochastic spatial Lotka–Volterra models, when suitably rescaled, can converge to a super-Brownian motion. We show that the limit process can be a super-stable process if the kernel of the underlying motion is in the domain of attraction of a stable law. The corresponding results in the Brownian setting were proved by Cox and Perkins (Ann. Probab. 33(3):904–947, 2005; Ann. Appl. Probab. 18(2):747–812, 2008). As applications of the convergence theorems, some new results on the asymptotics of the voter model started from single 1 at the origin are obtained, which improve the results by Bramson and Griffeath (Z. Wahrsch. Verw. Geb. 53:183–196, 1980).
引用
收藏
页码:688 / 728
页数:40
相关论文
共 50 条
  • [21] Super-stable Poissonian structures
    Eliazar, Iddo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (41)
  • [22] On the formation of super-stable granular heaps
    Lloyd, H. A.
    Maguire, E. S. F.
    Mistry, D.
    Reynolds, G. K.
    Johnson, C. G.
    Gray, J. M. N. T.
    JOURNAL OF FLUID MECHANICS, 2025, 1002
  • [23] An algorithm for a super-stable roommates problem
    Fleiner, Tamas
    Irving, Robert W.
    Manlove, David F.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (50) : 7059 - 7065
  • [24] LOTKA-VOLTERRA POPULATION MODELS
    WANGERSKY, PJ
    ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1978, 9 : 189 - 218
  • [25] A super-stable motion with infinite mean branching
    Fleischmann, K
    Sturm, A
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (05): : 513 - 537
  • [26] Modifying an instance of the super-stable matching problem
    Kamiyama, Naoyuki
    INFORMATION PROCESSING LETTERS, 2025, 189
  • [27] A MATROID GENERALIZATION OF THE SUPER-STABLE MATCHING PROBLEM
    Kamiyama N.
    SIAM Journal on Discrete Mathematics, 2022, 36 (02) : 1467 - 1482
  • [28] VFC HAS SUPER-STABLE ZERO OFFSET
    WOODWARD, WS
    ELECTRONIC DESIGN, 1995, 43 (19) : 100 - &
  • [29] On spurious behavior of super-stable implicit methods
    Yee, HC
    Sweby, PK
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1997, 8 (04) : 265 - +
  • [30] PERMANENCE AND ASYMPTOTICALLY STABLE COMPLETE TRAJECTORIES FOR NONAUTONOMOUS LOTKA-VOLTERRA MODELS WITH DIFFUSION
    Langa, Jose A.
    Robinson, James C.
    Rodriguez-Bernal, Anibal
    Suarez, Antonio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) : 2179 - 2216