Suitability of TEMPO-oxidized oat β-glucan for noodle preparation

被引:0
|
作者
Kwang Yeon Lee
Seung Young Park
Suyong Lee
Hyeon Gyu Lee
机构
[1] Hanyang University,Department of Food and Nutrition
[2] Sejong University,Department of Food Science and Technology
来源
关键词
β-glucan; oxidation; noodle; pasting; texture;
D O I
暂无
中图分类号
学科分类号
摘要
Native oat β-glucan (N-BG) and the oxidized derivative β-glucan (Oxi-BG) were incorporated into noodles and preparation characteristics (pasting, cooking, and textural properties) were investigated. N-BG caused an increase in the pasting parameters of wheat flour, and values were increased by Oxi-BG. Noodles containing either N-BG or Oxi-BG had higher cooked weights, cooked volumes, and water absorption values than controls. Raw noodles containing either N-BG or Oxi-BG showed high L values. Cooked noodles lacking BG exhibited higher L values. N-BG-containing noodles had textural properties similar to controls. Noodles prepared with Oxi-BG had higher textural parameter values than N-BG noodles, except for hardness.
引用
收藏
页码:1897 / 1901
页数:4
相关论文
共 50 条
  • [31] Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption
    Wang, Meng
    Shao, Changyou
    Zhou, Sukun
    Yang, Jun
    Xu, Feng
    RSC ADVANCES, 2017, 7 (61) : 38220 - 38230
  • [32] The non-trivial role of native xylans on the preparation of TEMPO-oxidized cellulose nanofibrils
    Meng, Qijun
    Li, Hailong
    Fu, Shiyu
    Lucia, Lucian A.
    REACTIVE & FUNCTIONAL POLYMERS, 2014, 85 : 142 - 150
  • [33] Preparation and Physical Properties of Tempo-Oxidized Cellulose Nanofiber/Acryl Transparent Composite Materials
    H. Sugimoto
    K. Kondo
    K. Sugiyama
    Strength of Materials, 2023, 55 : 781 - 789
  • [34] Preparation of methylated TEMPO-oxidized cellulose nanofibril hydrogel with high-temperature sensitivity
    Luo, Langman
    Fang, Zheng
    Zhang, Weifeng
    Geng, Shao
    Chen, Bing
    Chen, Hongfang
    Fu, Limei
    Wen, Yangbing
    CELLULOSE, 2022, 29 (16) : 8599 - 8609
  • [35] Functional nanocomposites based on TEMPO-oxidized cellulose nanofibers
    Koga, Hirotaka
    Saito, Tsuguyuki
    Kitaoka, Takuya
    Isogai, Akira
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [36] Impact of electrolytes on the rheology of TEMPO-oxidized cellulose nanofibril
    Rahmini
    Juhn S.
    Lee K.-H.
    Shin S.-J.
    Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2020, 52 (05): : 5 - 14
  • [37] TEMPO-Oxidized Cellulose Beads for Cationic Dye Adsorption
    Wang, Qianqian
    Liu, Simeng
    Chen, Honglei
    Liu, Jun
    Zhu, Qianqian
    BIORESOURCES, 2022, 17 (04) : 6056 - 6066
  • [38] Understanding protein adsorption to TEMPO-oxidized cellulose microfibrils
    Cobos, Samantha
    Nemmaru, Bhargava
    Chundawat, Shishir
    Athanasopoulos, Demosthenes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [39] Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers
    Mautner, Andreas
    Kobkeatthawin, Thawanrat
    Mayer, Florian
    Plessl, Christof
    Gorgieva, Selestina
    Kokol, Vanja
    Bismarck, Alexander
    NANOMATERIALS, 2019, 9 (02)
  • [40] Ultrasonic properties of amorphous TEMPO-oxidized cellulose nanofibers
    Fukuhara, Mikio
    Hasegawa, Fumihiko
    Hashida, Toshiyuki
    MRS COMMUNICATIONS, 2021, 11 (03) : 302 - 309