On Convergence of Finite-Difference Shock-Capturing Schemes in Regions of Shock Waves Influence

被引:0
|
作者
O. A. Kovyrkina
V. V. Ostapenko
V. F. Tishkin
机构
[1] Lavrentyev Institute of Hydrodynamics,
[2] Siberian Branch,undefined
[3] Russian Academy of Science,undefined
[4] Novosibirsk State University,undefined
[5] Federal Research Center Keldysh Institute of Applied Mathematics,undefined
[6] Russian Academy of Science,undefined
关键词
Rusanov scheme; CABARET scheme; WENO5 scheme; shock; local convergence of difference solution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:171 / 174
页数:3
相关论文
共 50 条
  • [21] Developing shock-capturing difference methods
    Tu Guo-hua
    Yuan Xiang-jiang
    Lu Li-Peng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (04) : 477 - 486
  • [22] Developing shock-capturing difference methods
    Guo-hua Tu
    Xiang-jiang Yuan
    Li-peng Lu
    Applied Mathematics and Mechanics, 2007, 28 : 477 - 486
  • [23] An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics
    Tai, YC
    Noelle, S
    Gray, JMNT
    Hutter, K
    ANNALS OF GLACIOLOGY, VOL 32, 2001, 2001, 32 : 263 - 267
  • [24] A general framework for the evaluation of shock-capturing schemes
    Zhao, Guoyan
    Sun, Mingbo
    Memmolo, Antonio
    Pirozzoli, Sergio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 924 - 936
  • [25] On shock-capturing schemes using artificial wind
    I.V. Sokolov
    E.V. Timofeev
    J. Sakai
    K. Takayama
    Shock Waves, 1999, 9 : 423 - 427
  • [26] On shock-capturing schemes using artificial wind
    Sokolov, IV
    Timofeev, EV
    Sakai, J
    Takayama, K
    SHOCK WAVES, 1999, 9 (06) : 423 - 427
  • [27] High-Order Bicompact Schemes for Shock-Capturing Computations of Detonation Waves
    M. D. Bragin
    B. V. Rogov
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1314 - 1323
  • [28] High-Order Bicompact Schemes for Shock-Capturing Computations of Detonation Waves
    Bragin, M. D.
    Rogov, B., V
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (08) : 1314 - 1323
  • [29] Performance of finite volume solutions to the shallow water equations with shock-capturing schemes
    Erduran, KS
    Kutija, V
    Hewett, CJM
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (10) : 1237 - 1273
  • [30] Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes
    Chu, Shaoshuai
    Kovyrkina, Olyana A.
    Kurganov, Alexander
    Ostapenko, Vladimir V.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4317 - 4346