Quasiconformal Homogeneity after Gehring and Palka

被引:0
|
作者
Petra Bonfert-Taylor
Richard Canary
Edward C. Taylor
机构
[1] Wesleyan University,
[2] University of Michigan,undefined
[3] National Science Foundation,undefined
关键词
Quasiconformal homogeneity; Hyperbolic surfaces; Primary 30C (or more specifically 30C62); Secondary 30F (or more specifically 30F45);
D O I
暂无
中图分类号
学科分类号
摘要
In a very influential paper Gehring and Palka introduced the notions of quasiconformally homogeneous and uniformly quasiconformally homogeneous subsets of R¯n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb {R}}^n$$\end{document}. Their definition was later extended to hyperbolic manifolds. In this paper we survey the theory of quasiconformally homogeneous subsets of R¯n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathbb {R}}^n$$\end{document} and uniformly quasiconformally homogeneous hyperbolic manifolds. We furthermore include a discussion of open problems in the theory.
引用
收藏
页码:417 / 430
页数:13
相关论文
共 50 条
  • [1] Quasiconformal Homogeneity after Gehring and Palka
    Bonfert-Taylor, Petra
    Canary, Richard
    Taylor, Edward C.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 417 - 430
  • [2] Quasiconformal homogeneity of hyperbolic manifolds
    Bonfert-Taylor, P
    Canary, RD
    Martin, G
    Taylor, E
    MATHEMATISCHE ANNALEN, 2005, 331 (02) : 281 - 295
  • [3] Quasiconformal homogeneity of hyperbolic manifolds
    Petra Bonfert-Taylor
    Richard D. Canary
    Gaven Martin
    Edward Taylor
    Mathematische Annalen, 2005, 331 : 281 - 295
  • [4] Quasiconformal homogeneity of genus zero surfaces
    Ferry Kwakkel
    Vladimir Markovic
    Journal d'Analyse Mathématique, 2011, 113 : 173 - 195
  • [5] AMBIENT QUASICONFORMAL HOMOGENEITY OF PLANAR DOMAINS
    Bonfert-Taylor, Petra
    Canary, Richard D.
    Martin, Gaven
    Taylor, Edward C.
    Wolf, Michael
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (01) : 275 - 283
  • [6] Swiss Cheese, Dendrites, and Quasiconformal Homogeneity
    Raimo Näkki
    Bruce Palka
    Computational Methods and Function Theory, 2014, 14 : 525 - 539
  • [7] Quasiconformal homogeneity of genus zero surfaces
    Kwakkel, Ferry
    Markovic, Vladimir
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 113 : 173 - 195
  • [8] Swiss Cheese, Dendrites, and Quasiconformal Homogeneity
    Nakki, Raimo
    Palka, Bruce
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 525 - 539
  • [9] A lower bound for Torelli--quasiconformal homogeneity
    Greenfield, Mark
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 61 - 70
  • [10] Quasiconformal Homogeneity and Subgroups of the Mapping Class Group
    Vlamis, Nicholas G.
    MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (01) : 53 - 75