Swiss Cheese, Dendrites, and Quasiconformal Homogeneity

被引:0
|
作者
Nakki, Raimo [1 ]
Palka, Bruce [2 ]
机构
[1] Univ Jyvaskyla, Dept Math, SF-40351 Jyvaskyla, Finland
[2] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
基金
美国国家科学基金会;
关键词
Quasiconformal mapping; Quasiconformally homogeneous domain; Swiss cheese; Dendrite; KLEINIAN-GROUPS; DOMAINS; PLANE;
D O I
10.1007/s40315-014-0059-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that is a simply connected domain in the extended complex plane with the following homogeneity property: for each pair of points and in there exists a -quasiconformal self-mapping of such that and . This paper classifies the simply connected plane domains with locally connected boundaries that exhibit this property for some . Any such domain falls into one of five (non-empty) categories, each specified by the character of the boundary of , namely is the empty set, a singleton, a quasicircle, a dendrite, or a Swiss cheese.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 50 条
  • [1] Swiss Cheese, Dendrites, and Quasiconformal Homogeneity
    Raimo Näkki
    Bruce Palka
    Computational Methods and Function Theory, 2014, 14 : 525 - 539
  • [2] Quasiconformal homogeneity of hyperbolic manifolds
    Bonfert-Taylor, P
    Canary, RD
    Martin, G
    Taylor, E
    MATHEMATISCHE ANNALEN, 2005, 331 (02) : 281 - 295
  • [3] Quasiconformal homogeneity of hyperbolic manifolds
    Petra Bonfert-Taylor
    Richard D. Canary
    Gaven Martin
    Edward Taylor
    Mathematische Annalen, 2005, 331 : 281 - 295
  • [4] Quasiconformal homogeneity of genus zero surfaces
    Ferry Kwakkel
    Vladimir Markovic
    Journal d'Analyse Mathématique, 2011, 113 : 173 - 195
  • [5] AMBIENT QUASICONFORMAL HOMOGENEITY OF PLANAR DOMAINS
    Bonfert-Taylor, Petra
    Canary, Richard D.
    Martin, Gaven
    Taylor, Edward C.
    Wolf, Michael
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (01) : 275 - 283
  • [6] Quasiconformal Homogeneity after Gehring and Palka
    Bonfert-Taylor, Petra
    Canary, Richard
    Taylor, Edward C.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 417 - 430
  • [7] Quasiconformal Homogeneity after Gehring and Palka
    Petra Bonfert-Taylor
    Richard Canary
    Edward C. Taylor
    Computational Methods and Function Theory, 2014, 14 : 417 - 430
  • [8] Quasiconformal homogeneity of genus zero surfaces
    Kwakkel, Ferry
    Markovic, Vladimir
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 113 : 173 - 195
  • [9] SWISS CHEESE
    NADER, R
    NEW REPUBLIC, 1969, 161 (2865) : 11 - 12
  • [10] A lower bound for Torelli--quasiconformal homogeneity
    Greenfield, Mark
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 61 - 70