Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration

被引:0
|
作者
Manuel J. Carrasco
Suman Alishetty
Mohamad-Gabriel Alameh
Hooda Said
Lacey Wright
Mikell Paige
Ousamah Soliman
Drew Weissman
Thomas E. Cleveland
Alexander Grishaev
Michael D. Buschmann
机构
[1] George Mason University,Department of Bioengineering
[2] University of Pennsylvania,Perelman School of Medicine
[3] George Mason University,Department of Chemistry & Biochemistry
[4] University of Pennsylvania,Perelman School of Medicine
[5] Institute for Bioscience and Biotechnology Research National Institute of Standards and Technology,undefined
来源
Communications Biology | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.
引用
收藏
相关论文
共 50 条
  • [21] Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH
    Hajj, Khalid A.
    Ball, Rebecca L.
    Deluty, Sarah B.
    Singh, Shridhar R.
    Strelkova, Daria
    Knapp, Christopher M.
    Whitehead, Kathryn A.
    SMALL, 2019, 15 (06)
  • [22] In Vivo Introduction of mRNA Encapsulated in Lipid Nanoparticles to Brain Neuronal Cells and Astrocytes via Itracerebroventricular Administration
    Tanaka, Hiroki
    Nakatani, Taichi
    Furihata, Tomomi
    Tange, Kota
    Nakai, Yuta
    Yoshioka, Hiroki
    Harashima, Hideyoshi
    Akita, Hidetaka
    MOLECULAR PHARMACEUTICS, 2018, 15 (05) : 2060 - 2067
  • [23] Cardiac delivery of modified mRNA using lipid nanoparticles: Cellular targets and biodistribution after intramyocardial administration
    Labonia, M. C. I.
    Senti, M. Estape
    van der Kraak, P. H.
    Brans, M. A. D.
    Dokter, I.
    Streef, T. J.
    Smits, A. M.
    Deshantri, A. K.
    de Jager, S. C. A.
    Schiffelers, R. M.
    Sluijter, J. P. G.
    Vader, P.
    JOURNAL OF CONTROLLED RELEASE, 2024, 369 : 734 - 745
  • [24] PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration
    Kurimoto, Shota
    Yoshinaga, Naoto
    Igarashi, Kazunori
    Matsumoto, Yu
    Cabral, Horacio
    Uchida, Satoshi
    MOLECULES, 2019, 24 (07)
  • [25] Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles
    Sebastiani, Federica
    Arteta, Marianna Yanez
    Lerche, Michael
    Porcar, Lionel
    Lang, Christian
    Bragg, Ryan A.
    Elmore, Charles S.
    Krishnamurthy, Venkata R.
    Russell, Robert A.
    Darwish, Tamim
    Pichler, Harald
    Waldie, Sarah
    Moulin, Martine
    Haertlein, Michael
    Forsyth, V. Trevor
    Lindfors, Lennart
    Cardenas, Marite
    ACS NANO, 2021, 15 (04) : 6709 - 6722
  • [26] Influence of melatonin on the structural and thermal properties of SOPC lipid membranes
    Santhosh, Poornima Budime
    Genova, Julia
    Slavkova, Zdravka
    Chamati, Hassan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 647
  • [27] Influence of Pre-Existing Neutralizing Antibodies on Gene Expression Following Intramuscular Administration of AAV Vectors
    Greig, Jenny A.
    McMenamin, Deirdre
    Wilson, James M.
    MOLECULAR THERAPY, 2011, 19 (07) : 1364 - 1365
  • [28] In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT
    Kollenda, Sebastian A.
    Klose, Jasmin
    Knuschke, Torben
    Sokolova, Viktoriya
    Schmitz, Jochen
    Staniszewska, Magdalena
    Costa, Pedro Fragoso
    Herrmann, Ken
    Westendorf, Astrid M.
    Fendler, Wolfgang P.
    Epple, Matthias
    ACTA BIOMATERIALIA, 2020, 109 : 244 - 253
  • [29] Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes
    Pardi, Norbert
    Tuyishime, Steven
    Muramatsu, Hiromi
    Kariko, Katalin
    Mui, Barbara L.
    Tam, Ying K.
    Madden, Thomas D.
    Hope, Michael J.
    Weissman, Drew
    JOURNAL OF CONTROLLED RELEASE, 2015, 217 : 345 - 351
  • [30] Influence of lipids on the properties of solid lipid nanoparticles from microemulsion technique
    Boonme, Prapaporn
    Souto, Eliana B.
    Wuttisantikul, Norasak
    Jongjit, Tarntep
    Pichayakorn, Wiwat
    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, 2013, 115 (07) : 820 - 824