Tilings of the plane and Thurston semi-norm

被引:0
|
作者
Jean-René Chazottes
Jean-Marc Gambaudo
François Gautero
机构
[1] CNRS-École Polytechnique,Centre de Physique Théorique
[2] Université Nice Sophia Antipolis-CNRS,INLN
[3] Université Nice Sophia Antipolis-CNRS,Laboratoire J.A. Dieudonné
来源
Geometriae Dedicata | 2014年 / 173卷
关键词
Euclidean tilings; Branched surfaces; Translation surfaces; 52C20; 57M12;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the problem of tiling the Euclidean plane with a finite set of polygons (up to translation) boils down to prove the existence of zeros of a non-negative convex function defined on a finite-dimensional simplex. This function is a generalisation, in the framework of branched surfaces, of the Thurston semi-norm originally defined for compact 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-manifolds.
引用
收藏
页码:129 / 142
页数:13
相关论文
共 50 条
  • [41] Solved tilings of the plane
    Nienhuis, B
    de Gier, J
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 97 - 97
  • [42] The effect of link Dehn surgery on the Thurston norm
    Miller, Maggie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (22) : 19069 - 19114
  • [43] Link Floer homology detects the Thurston norm
    Ni, Yi
    GEOMETRY & TOPOLOGY, 2009, 13 : 2991 - 3019
  • [44] Solution of Two-Dimensional Electromagnetic Scattering Problem by FDTD with Optimal Step Size, Based on a Semi-Norm Analysis
    Monsefi, Farid
    Carlsson, Linus
    Rancic, Milica
    Otterskog, Magnus
    Silvestrov, Sergei
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 683 - 690
  • [45] THE THURSTON NORM AND 2-HANDLE ADDITION
    SCHARLEMANN, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) : 362 - 366
  • [46] Veering triangulations and the Thurston norm: Homology to isotopy
    Landry, Michael P.
    ADVANCES IN MATHEMATICS, 2022, 396
  • [47] Power series link invariants and the Thurston norm
    Kalfagianni, E
    TOPOLOGY AND ITS APPLICATIONS, 2000, 101 (02) : 107 - 119
  • [48] Construction of interpolation splines minimizing semi-norm in W2(m,m-1) (0, 1) space
    Shadimetov, Kholmat M.
    Hayotov, Abdullo R.
    BIT NUMERICAL MATHEMATICS, 2013, 53 (02) : 545 - 563
  • [49] On the chromatic number of plane tilings
    Coulson, D
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 77 : 191 - 196
  • [50] SLk-TILINGS OF THE PLANE
    Bergeron, Francois
    Reutenauer, Christophe
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (01) : 263 - 300