Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

被引:0
|
作者
Mohammad Pourmahmood Aghababa
Mohammad Hossein Amrollahi
Mehdi Borjkhani
机构
[1] Urmia University of Technology,Electrical Engineering Department
关键词
path planning; autonomous underwater vehicle; genetic algorithm (GA); particle swarm optimization (PSO); ant colony optimization (ACO); collision avoidance;
D O I
10.1007/s11804-012-1146-x
中图分类号
学科分类号
摘要
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
引用
下载
收藏
页码:378 / 386
页数:8
相关论文
共 50 条
  • [31] Path Planning for Autonomous Underwater Vehicles With Simultaneous Arrival in Ocean Environment
    Yao, Peng
    Zhao, Zhiyao
    Zhu, Qian
    IEEE SYSTEMS JOURNAL, 2020, 14 (03): : 3185 - 3193
  • [32] Hierarchical dynamic trajectory planning for autonomous underwater vehicles: Algorithms and experiments
    Liu, Guoshun
    Zheng, Huarong
    Liu, Shuo
    Shen, Binjian
    Xu, Wen
    OCEAN ENGINEERING, 2024, 307
  • [33] A Hybrid ACO-PSO Technique for Path Planning
    Gigras, Yogita
    Choudhary, Kavita
    Gupta, Kusum
    Vandana
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 1616 - 1621
  • [34] Path planning with PSO for autonomous vehicle
    Cai, L.
    Jia, J. P.
    ADVANCES IN ENGINEERING MATERIALS AND APPLIED MECHANICS, 2016, : 263 - 266
  • [35] A Time-Saving Path Planning Scheme for Autonomous Underwater Vehicles With Complex Underwater Conditions
    Yang, Jiachen
    Huo, Jiaming
    Xi, Meng
    He, Jingyi
    Li, Zhengjian
    Song, Houbing Herbert
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (02) : 1001 - 1013
  • [36] Application of autonomous underwater vehicles
    Wood, S
    Nulph, A
    Howell, B
    SEA TECHNOLOGY, 2004, 45 (12) : 10 - 14
  • [37] An Overview of Machine Learning Techniques in Local Path Planning for Autonomous Underwater Vehicles
    Okereke, Chinonso E.
    Mohamad, Mohd Murtadha
    Wahab, Nur Haliza Abdul
    Elijah, Olakunle
    Al-Nahari, Abdulaziz
    Zaleha, S. H.
    IEEE ACCESS, 2023, 11 : 24894 - 24907
  • [38] Automatic Path Planning for Autonomous Underwater Vehicles based on an Adaptive Differential Evolution
    Zhang, Chuan-Bin
    Gong, Yue-Jiao
    Li, Jing-Jing
    Lin, Ying
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 89 - 95
  • [39] Online Informative Path Planning for Autonomous Underwater Vehicles with Cross Entropy Optimization
    Li, Yang
    Cui, Rongxin
    Xu, Demin
    Liu, Shuqiang
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 566 - 571
  • [40] Path Planning for the Autonomous Underwater Vehicle
    Kirsanov, Andrey
    Anavatti, Sreenatha G.
    Ray, Tapabrata
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT II (SEMCCO 2013), 2013, 8298 : 476 - 486