Strength of optical quality polycrystalline CVD diamond

被引:6
|
作者
Ralchenko V.G. [1 ]
Pleiler E. [2 ]
Sovyk D.N. [1 ]
Konov V.I. [1 ]
机构
[1] Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow
[2] Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg
基金
俄罗斯基础研究基金会;
关键词
Bending strength; CVD diamond; Polycrystalline diamond; Weibull modulus; Young modulus;
D O I
10.1134/S2075113311050273
中图分类号
学科分类号
摘要
The three-point loading method is used to the measure the fracture strength σf of polycrystalline CVD diamond plates with thickness in the range of h = 0.06–1.0 mm. Optical quality samples grown in a microwave plasma using CH4–H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1–2 orders of magnitude in traversing from the substrate side to growth side. The value of σf approaches ≈ 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to ≈ 600 MPa at h ≈1000 μm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall–Petch relationship—a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young’s modulus E = 1072 ± 153 GPa for polycrystalline diamond is evaluated from the same tests. © Pleiades Publishing, Ltd., 2011.
引用
收藏
页码:439 / 444
页数:5
相关论文
共 50 条
  • [41] MECHANICAL PROPERTY MEASUREMENTS OF BULK POLYCRYSTALLINE CVD DIAMOND
    VALENTINE, TJ
    WHITEHEAD, AJ
    SUSSMANN, RS
    WORT, CJH
    SCARSBROOK, GA
    DIAMOND AND RELATED MATERIALS, 1994, 3 (09) : 1168 - 1172
  • [42] Optical nonuniformity of polycrystalline CVD ZnSe
    Devyatykh, GG
    Gavrishchuk, EM
    Ikonnikov, VB
    Sennikov, PG
    Yashina, EV
    INORGANIC MATERIALS, 1998, 34 (06) : 537 - 540
  • [43] Optical losses in polycrystalline CVD ZnS
    V. I. Bredikhin
    E. M. Gavrishchuk
    V. B. Ikonnikov
    E. V. Karaksina
    L. A. Ketkova
    S. P. Kuznetsov
    O. A. Mal’shakova
    Inorganic Materials, 2009, 45
  • [44] Thermal conductivity of polycrystalline CVD diamond: Experiment and theory
    A. V. Inyushkin
    A. N. Taldenkov
    V. G. Ral’chenko
    V. I. Konov
    A. V. Khomich
    R. A. Khmel’nitskiĭ
    Journal of Experimental and Theoretical Physics, 2008, 107 : 462 - 472
  • [45] UV photoemission efficiency of polycrystalline CVD diamond films
    Tremsin, AS
    Siegmund, OHW
    DIAMOND AND RELATED MATERIALS, 2005, 14 (01) : 48 - 53
  • [46] OPTICAL APPLICATIONS OF POLYCRYSTALLINE DIAMOND
    KOIDL, P
    KLAGES, CP
    DIAMOND AND RELATED MATERIALS, 1992, 1 (10-11) : 1065 - 1074
  • [47] Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics
    A. L. Vikharev
    A. M. Gorbachev
    M. P. Dukhnovsky
    A. B. Muchnikov
    A. K. Ratnikova
    Yu. Yu. Fedorov
    Semiconductors, 2012, 46 : 263 - 266
  • [48] Combined Single-crystalline and Polycrystalline CVD Diamond Substrates for Diamond Electronics
    Vikharev, A. L.
    Gorbachev, A. M.
    Dukhnovsky, M. P.
    Muchnikov, A. B.
    Ratnikova, A. K.
    Fedorov, Yu Yu.
    SEMICONDUCTORS, 2012, 46 (02) : 263 - 266
  • [49] CVD-diamond optical lenses
    Woerner, E
    Wild, C
    Mueller-Sebert, W
    Koidl, P
    DIAMOND AND RELATED MATERIALS, 2001, 10 (3-7) : 557 - 560
  • [50] Optical Quality Laser Polishing of CVD Diamond by UV Pulsed Laser Irradiation
    Liu, Huagang
    Xie, Linran
    Lin, Wenxiong
    Hong, Minghui
    ADVANCED OPTICAL MATERIALS, 2021, 9 (21):