Strength of optical quality polycrystalline CVD diamond

被引:6
|
作者
Ralchenko V.G. [1 ]
Pleiler E. [2 ]
Sovyk D.N. [1 ]
Konov V.I. [1 ]
机构
[1] Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow
[2] Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg
基金
俄罗斯基础研究基金会;
关键词
Bending strength; CVD diamond; Polycrystalline diamond; Weibull modulus; Young modulus;
D O I
10.1134/S2075113311050273
中图分类号
学科分类号
摘要
The three-point loading method is used to the measure the fracture strength σf of polycrystalline CVD diamond plates with thickness in the range of h = 0.06–1.0 mm. Optical quality samples grown in a microwave plasma using CH4–H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1–2 orders of magnitude in traversing from the substrate side to growth side. The value of σf approaches ≈ 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to ≈ 600 MPa at h ≈1000 μm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall–Petch relationship—a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young’s modulus E = 1072 ± 153 GPa for polycrystalline diamond is evaluated from the same tests. © Pleiades Publishing, Ltd., 2011.
引用
收藏
页码:439 / 444
页数:5
相关论文
共 50 条
  • [1] Fracture strength of optical quality and black polycrystalline CVD diamonds
    Ralchenko, V. G.
    Pleuler, E.
    Lu, F. X.
    Sovyk, D. N.
    Bolshakov, A. P.
    Guo, S. B.
    Tang, W. Z.
    Gontar, I. V.
    Khomich, A. A.
    Zavedeev, E. V.
    Konov, V. I.
    DIAMOND AND RELATED MATERIALS, 2012, 23 : 172 - 177
  • [2] Diamond MISFETs fabricated on high quality polycrystalline CVD diamond
    Hirama, K.
    Takayanagi, H.
    Yamauchi, S.
    Jingu, Y.
    Umezawa, H.
    Kawarada, H.
    PROCEEDINGS OF THE 19TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND ICS, 2007, : 269 - +
  • [3] Estimation of the silicon concentration by an optical way in polycrystalline CVD diamond
    Rzepka, E
    Laroche, JM
    Teukam, Z
    Franc, G
    Jomard, F
    Ballutaud, D
    Galtier, P
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (11): : 2503 - 2508
  • [4] Single crystal and polycrystalline CVD diamond for demanding optical applications
    Dodson, J. M.
    Brandon, J. R.
    Dhillon, H. K.
    Friel, I.
    Geoghegan, S. L.
    Mollart, T. P.
    Santini, P.
    Scarsbrook, G. A.
    Twitchen, D. J.
    Whitehead, A. J.
    Wilman, J. J.
    de Wit, H.
    WINDOW AND DOME TECHNOLOGIES AND MATERIALS XII, 2011, 8016
  • [5] QUALITY ASSURANCE OF POLYCRYSTALLINE CVD DIAMOND MATERIALS FOR ELECTRONIC APPLICATIONS
    SEIBLES, L
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 96 - ANYL
  • [6] FRACTURE STRENGTH MEASUREMENT OF FILAMENT ASSISTED CVD POLYCRYSTALLINE DIAMOND FILMS
    CARDINALE, GF
    ROBINSON, CJ
    JOURNAL OF MATERIALS RESEARCH, 1992, 7 (06) : 1432 - 1437
  • [7] Hydrogen in polycrystalline CVD diamond
    Rutledge, KMM
    HYDROGEN IN SEMICONDUCTORS II, 1999, 61 : 283 - 310
  • [8] Microvoids in polycrystalline CVD diamond
    McNamara, KM
    OPTICAL MICROSTRUCTURAL CHARACTERIZATION OF SEMICONDUCTORS, 2000, 588 : 283 - 289
  • [9] Comparative study of optical absorption in diamond powders and polycrystalline CVD films
    Obraztsov, AN
    Okushi, H
    Watanabe, H
    Pavlovsky, IY
    DIAMOND AND RELATED MATERIALS, 1997, 6 (09) : 1124 - 1128
  • [10] IMRT field profiling by high-quality polycrystalline CVD diamond
    Bruzzi, M.
    Talamonti, C.
    Scaringella, M.
    Mori, R.
    Pace, E.
    De Sio, A.
    Tozzetti, L.
    Zani, M.
    Bucciolini, M.
    JOURNAL OF INSTRUMENTATION, 2012, 7