Time-periodic solutions for 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion

被引:0
|
作者
Chengfeng Sun
Fang Zhang
Hui Liu
Qingkun Xiao
机构
[1] Nanjing University of Finance and Economics,School of Applied Mathematics
[2] Qufu Normal University,School of Mathematical Sciences
[3] Nanjing Agricultural University,College of Sciences
关键词
MHD equations; Horizontal dissipation and magnetic diffusion; Time-periodic solutions; 35B45; 35B65; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The 2D magnetohydrodynamics equations with horizontal dissipation and horizontal magnetic diffusion are considered. The classical solution in Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^k$$\end{document}(k≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k\ge 2)$$\end{document} has been obtained; due to partial dissipation and strong nonlinearity, the global well-posedness of weak solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} is still unknown. In this paper, by combining classic Galerkin’s method with Brouwer’s fixed point theorem, existence of time-periodic solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} with small initial values is obtained.
引用
收藏
相关论文
共 50 条
  • [31] Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion
    Li, Jingna
    Wang, Haozhen
    Zheng, Dahao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [32] Time-periodic heating of a rotating horizontal fluid layer in a vertical magnetic field
    Bhadauria, BS
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (8-9): : 583 - 592
  • [33] Stability and sharp decay for 3D incompressible MHD system with fractional horizontal dissipation and magnetic diffusion
    Jingna Li
    Haozhen Wang
    Dahao Zheng
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [34] Stability and Exponential Decay for the 2D Anisotropic Navier–Stokes Equations with Horizontal Dissipation
    Boqing Dong
    Jiahong Wu
    Xiaojing Xu
    Ning Zhu
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [35] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [36] Asymptotic stability of the 2D MHD equations without magnetic diffusion
    Dong, Lihua
    Ren, Xiaoxia
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [37] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Jiu, Quanse
    Zhao, Jiefen
    Zeitschrift fur Angewandte Mathematik und Physik, 2014, 66 (03): : 677 - 687
  • [38] Stability for the 2D incompressible MHD equations with only magnetic diffusion
    Zhai, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 : 267 - 278
  • [39] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Quansen Jiu
    Jiefeng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 677 - 687
  • [40] Global regularity of 2D generalized MHD equations with magnetic diffusion
    Jiu, Quansen
    Zhao, Jiefeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 677 - 687