Time-periodic solutions for 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion

被引:0
|
作者
Chengfeng Sun
Fang Zhang
Hui Liu
Qingkun Xiao
机构
[1] Nanjing University of Finance and Economics,School of Applied Mathematics
[2] Qufu Normal University,School of Mathematical Sciences
[3] Nanjing Agricultural University,College of Sciences
关键词
MHD equations; Horizontal dissipation and magnetic diffusion; Time-periodic solutions; 35B45; 35B65; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The 2D magnetohydrodynamics equations with horizontal dissipation and horizontal magnetic diffusion are considered. The classical solution in Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^k$$\end{document}(k≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k\ge 2)$$\end{document} has been obtained; due to partial dissipation and strong nonlinearity, the global well-posedness of weak solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} is still unknown. In this paper, by combining classic Galerkin’s method with Brouwer’s fixed point theorem, existence of time-periodic solution in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} with small initial values is obtained.
引用
收藏
相关论文
共 50 条