Manifold;
Probability Measure;
Pseudodifferential Operator;
Nodal Domain;
Counting Multiplicity;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We investigate small scale equidistribution of random orthonormal bases of eigenfunctions (i.e., eigenbases) on a compact manifold M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb M}}$$\end{document}. Assume that the group of isometries acts transitively on M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb M}}$$\end{document} and the multiplicity mλ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${m_\lambda}$$\end{document} of eigenfrequency λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda}$$\end{document} tends to infinity at least logarithmically as λ→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda \to \infty}$$\end{document}. We prove that, with respect to the natural probability measure on the space of eigenbases, almost surely a random eigenbasis is equidistributed at small scales; furthermore, the scales depend on the growth rate of mλ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${m_\lambda}$$\end{document}. In particular, this implies that almost surely random eigenbases on the sphere Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb S}^n}$$\end{document} (n≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \ge 2}$$\end{document}) and the tori Tn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb T}^n}$$\end{document} (n≥5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${n \ge 5}$$\end{document}) are equidistributed at polynomial scales.
机构:
Univ Lille 1, UFR Math, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, FranceUniv Lille 1, UFR Math, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, France
Nguyen Viet Dang
Riviere, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille 1, UFR Math, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, FranceUniv Lille 1, UFR Math, Lab Paul Painleve UMR CNRS 8524, F-59655 Villeneuve Dascq, France