共 50 条
On Simple-Minded Systems Over Representation-Finite Self-Injective Algebras
被引:0
|作者:
Jing Guo
Yuming Liu
Yu Ye
Zhen Zhang
机构:
[1] University of Science and Technology of China,School of Mathematical Sciences
[2] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems
[3] University of Science and Technology of China,School of Mathematical Sciences, CAS Wu Wen
[4] Beijing Normal University,Tsun Key Laboratory of Mathematics
来源:
关键词:
Simple-minded system;
RFS algebra;
Orthogonal system;
Nakayama-stable;
16G20;
18Gxx;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let A be a representation-finite self-injective algebra over an algebraically closed field k. We give a new characterization for an orthogonal system in the stable module category A-mod̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\underline {\text {mod}}$\end{document} to be a simple-minded system. As a by-product, we show that every Nakayama-stable orthogonal system in A-mod̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\underline {\text {mod}}$\end{document} extends to a simple-minded system.
引用
收藏
页码:983 / 1002
页数:19
相关论文