Efficient HSS-based preconditioners for generalized saddle point problems

被引:0
|
作者
Ke Zhang
Lin-Na Wang
机构
[1] Shanghai Maritime University,Department of Mathematics
来源
Computational and Applied Mathematics | 2020年 / 39卷
关键词
Generalized saddle point problem; Preconditioner; Hermitian and skew-Hermitian splitting; Krylov subspace method; 65F10; 65N22;
D O I
暂无
中图分类号
学科分类号
摘要
A fast iteration method based on HSS is proposed for solving the nonsymmetric generalized saddle point problem. It converges to the unique solution of the generalized saddle point problem unconditionally. We devise a new preconditioner induced by the new iteration method. We analyze the spectrum of the preconditioned coefficient matrix, and reveal the relation between the theoretically required number of iteration steps and the dimension of the preconditioned Krylov subspace. Furthermore, some practical inexact variants of the new preconditioner have been developed to reduce the computational overhead. Numerical experiments validate the effectiveness of the proposed preconditioners.
引用
收藏
相关论文
共 50 条
  • [41] Analysis of preconditioners for saddle-point problems
    Loghin, D
    Wathen, AJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06): : 2029 - 2049
  • [42] A class of nonsymmetric preconditioners for saddle point problems
    Botchev, MA
    Golub, GH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) : 1125 - 1149
  • [43] Parallel Preconditioners for Saddle-Point Problems
    Ferronato, M.
    Janna, C.
    Gambolati, G.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [44] A class of preconditioners based on symmetric-triangular decomposition and matrix splitting for generalized saddle point problems
    Wang, Nana
    Li, Jicheng
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) : 2998 - 3025
  • [45] SEMI-CONVERGENCE OF THE GENERALIZED LOCAL HSS METHOD FOR SINGULAR SADDLE POINT PROBLEMS
    Miao, Shu-Xin
    Cao, Yang
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (02): : 71 - 80
  • [46] FOV-equivalent block triangular preconditioners for generalized saddle-point problems
    Aulisa, Eugenio
    Calandrini, Sara
    Capodaglio, Giacomo
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 43 - 49
  • [47] A new relaxed HSS preconditioner for saddle point problems
    Davod Khojasteh Salkuyeh
    Mohsen Masoudi
    Numerical Algorithms, 2017, 74 : 781 - 795
  • [48] A note on constraint preconditioners for nonsymmetric saddle point problems
    Lin, Yiqin
    Wei, Yimin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (08) : 659 - 664
  • [49] A new relaxed HSS preconditioner for saddle point problems
    Salkuyeh, Davod Khojasteh
    Masoudi, Mohsen
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 781 - 795
  • [50] Regularized DPSS Preconditioners for Singular Saddle Point Problems
    Qian, Yong
    Zhang, Guofeng
    Liang, Zhaozheng
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (04) : 986 - 1006