p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci

被引:0
|
作者
Cristiano Simone
Sonia Vanina Forcales
David A Hill
Anthony N Imbalzano
Lucia Latella
Pier Lorenzo Puri
机构
[1] Laboratory of Gene Expression,Department of Cell Biology
[2] Dulbecco Telethon Institute at Fondazione A. Cesalpino,undefined
[3] Institute of Cell Biology and Tissue Engineering,undefined
[4] San Raffaele Biomedical Science Park of Rome,undefined
[5] The Salk Institute for Biological Studies,undefined
[6] Peptide Biology Laboratory,undefined
[7] University of Massachusetts Medical School,undefined
来源
Nature Genetics | 2004年 / 36卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
During skeletal myogenesis, genomic reprogramming toward terminal differentiation is achieved by recruiting chromatin-modifying enzymes to muscle-specific loci1,2. The relative contribution of extracellular signaling cascades in targeting these enzymes to individual genes is unknown. Here we show that the differentiation-activated p38 pathway3,4,5 targets the SWI-SNF chromatin-remodeling complex to myogenic loci. Upon differentiation, p38 kinases were recruited to the chromatin of muscle-regulatory elements. Blockade of p38α/β repressed the transcription of muscle genes by preventing recruitment of the SWI-SNF complex at these elements without affecting chromatin binding of muscle-regulatory factors and acetyltransferases. The SWI-SNF subunit BAF60 could be phosphorylated by p38α-β in vitro, and forced activation of p38α/β in myoblasts by expression of a constitutively active MKK6 (refs. 5,6,7) promoted unscheduled SWI-SNF recruitment to the myogenin promoter. Conversely, inactivation of SWI-SNF enzymatic subunits abrogated MKK6-dependent induction of muscle gene expression. These results identify an unexpected function of differentiation-activated p38 in converting external cues into chromatin modifications at discrete loci, by selectively targeting SWI-SNF to muscle-regulatory elements.
引用
收藏
页码:738 / 743
页数:5
相关论文
共 50 条
  • [31] SWI/SNF chromatin-remodeling complex enzymes, BRG1 and BRM, are dispensable in multiple models of postnatal angiogenesis
    Wiley, Mandi M.
    ANGIOGENESIS, 2014, 17 (04) : 963 - 964
  • [32] Chromatin-remodeling SWI/SNF complex regulates coenzyme Q6 synthesis and a metabolic shift to respiration in yeast
    Awad, Agape M.
    Venkataramanan, Srivats
    Nag, Anish
    Galivanche, Anoop Raj
    Bradley, Michelle C.
    Neves, Lauren T.
    Douglass, Stephen
    Clarke, Catherine F.
    Johnson, Tracy L.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (36) : 14851 - 14866
  • [33] SWI/SNF Chromatin-remodeling Complex Status in SMARCB1/INI1-preserved Epithelioid Sarcoma
    Kohashi, Kenichi
    Yamamoto, Hidetaka
    Yamada, Yuichi
    Kinoshita, Izumi
    Taguchi, Tomoaki
    Iwamoto, Yukihide
    Oda, Yoshinao
    AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2018, 42 (03) : 312 - 318
  • [34] The Osa-containing SWI/SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine
    Zeng, Xiankun
    Lin, Xinhua
    Hou, Steven X.
    DEVELOPMENT, 2013, 140 (17): : 3532 - 3540
  • [35] Wongabel Rhabdovirus Accessory Protein U3 Targets the SWI/SNF Chromatin Remodeling Complex
    Joubert, D. Albert
    Rodriguez-Andres, Julio
    Monaghan, Paul
    Cummins, Michelle
    McKinstry, William J.
    Paradkar, Prasad N.
    Moseley, Gregory W.
    Walker, Peter J.
    JOURNAL OF VIROLOGY, 2015, 89 (02) : 1377 - 1388
  • [36] A novel genetic strategy reveals unexpected roles of the Swi-Snf-like chromatin-remodeling BAF complex in thymocyte development
    Jani, Anant
    Wan, Mimi
    Zhang, Jianmin
    Cui, Kairong
    Wu, Jie
    Preston-Hurlburt, Paula
    Khatri, Rohini
    Zhao, Keji
    Chi, Tian
    JOURNAL OF EXPERIMENTAL MEDICINE, 2008, 205 (12): : 2813 - 2825
  • [37] Chromatin-Remodeling Complex SWI/SNF Controls Multidrug Resistance by Transcriptionally Regulating the Drug Efflux Pump ABCB1
    Dubey, Ramin
    Lebensohn, Andres M.
    Bahrami-Nejad, Zahra
    Marceau, Caleb
    Champion, Magali
    Gevaert, Olivier
    Sikic, Branimir I.
    Carette, Jan E.
    Rohatgi, Rajat
    CANCER RESEARCH, 2016, 76 (19) : 5810 - 5821
  • [38] The SWI/SNF Chromatin-remodeling Complex Modulates Peripheral T Cell Activation and Proliferation by Controlling AP-1 Expression
    Jeong, Seung Min
    Lee, Changjin
    Lee, Sung Kyu
    Kim, Jieun
    Seong, Rho Hyun
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (04) : 2340 - 2350
  • [39] Haploinsufficiency of ARID1B, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability
    Hoyer, Juliane
    Ekici, Arif B.
    Endele, Sabine
    Popp, Bernt
    Zweier, Christiane
    Wiesener, Antje
    Wohlleber, Eva
    Dufke, Andreas
    Rossier, Eva
    Petsch, Corinna
    Zweier, Markus
    Goehring, Ina
    Zink, Alexander M.
    Rappold, Gudrun
    Schroeck, Evelin
    Wieczorek, Dagmar
    Riess, Olaf
    Engels, Hartmut
    Rauch, Anita
    Reis, Andre
    AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (03) : 565 - 572
  • [40] Calcineurin Broadly Regulates the Initiation of Skeletal Muscle-Specific Gene Expression by Binding Target Promoters and Facilitating the Interaction of the SWI/SNF Chromatin Remodeling Enzyme
    Witwicka, Hanna
    Nogami, Jumpei
    Syed, Sabriya A.
    Maehara, Kazumitsu
    Padilla-Benavides, Teresita
    Ohkawa, Yasuyuki
    Imbalzano, Anthony N.
    MOLECULAR AND CELLULAR BIOLOGY, 2019, 39 (19)