Half-space depth of log-concave probability measures

被引:0
|
作者
Silouanos Brazitikos
Apostolos Giannopoulos
Minas Pafis
机构
[1] National and Kapodistrian University of Athens,Department of Mathematics
来源
关键词
Log-concave probability measures; Half-space depth; Isotropic constant; Random polytopes; Convex bodies; Primary 60D05; Secondary 62H05; 46B06; 52A40; 52A23;
D O I
暂无
中图分类号
学科分类号
摘要
Given a probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document}, Tukey’s half-space depth is defined for any x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {{\mathbb {R}}}^n$$\end{document} by φμ(x)=inf{μ(H):H∈H(x)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{\mu }(x)=\inf \{\mu (H):H\in {{{\mathcal {H}}}}(x)\}$$\end{document}, where H(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}(x)$$\end{document} is the set of all half-spaces H of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} containing x. We show that if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a non-degenerate log-concave probability measure on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} then e-c1n⩽∫Rnφμ(x)dμ(x)⩽e-c2n/Lμ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} e^{-c_1n}\leqslant \int _{{\mathbb {R}}^n}\varphi _{\mu }(x)\,d\mu (x) \leqslant e^{-c_2n/L_{\mu }^2} \end{aligned}$$\end{document}where Lμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }$$\end{document} is the isotropic constant of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and c1,c2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1,c_2>0$$\end{document} are absolute constants. The proofs combine large deviations techniques with a number of facts from the theory of Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document}-centroid bodies of log-concave probability measures. The same ideas lead to general estimates for the expected measure of random polytopes whose vertices have a log-concave distribution.
引用
收藏
页码:309 / 336
页数:27
相关论文
共 50 条
  • [11] Log-concave probability and its applications
    Mark Bagnoli
    Ted Bergstrom
    Economic Theory, 2005, 26 : 445 - 469
  • [12] Spectral gap for spherically symmetric log-concave probability measures, and beyond
    Bonnefont, Michel
    Joulin, Alderic
    Ma, Yutao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2456 - 2482
  • [13] KLS-type isoperimetric bounds for log-concave probability measures
    Bobkov, Sergey G.
    Cordero-Erausquin, Dario
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 681 - 695
  • [14] KLS-type isoperimetric bounds for log-concave probability measures
    Sergey G. Bobkov
    Dario Cordero-Erausquin
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 681 - 695
  • [15] A Note on the Spectral Gap for Log-Concave Probability Measures on Convex Bodies
    Bonnefont, Michel
    Joulin, Alderic
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024,
  • [16] Geometry of Log-concave Functions and Measures
    B. Klartag
    V. D. Milman
    Geometriae Dedicata, 2005, 112 : 169 - 182
  • [17] Geometry of log-concave functions and measures
    Klartag, B
    Milman, V
    GEOMETRIAE DEDICATA, 2005, 112 (01) : 169 - 182
  • [18] On measures strongly log-concave on a subspace
    Bizeul, Pierre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1090 - 1100
  • [19] On the Poincare Constant of Log-Concave Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 171 - 217
  • [20] On isoperimetric constants for log-concave probability distributions
    Bobkov, S. G.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2007, 1910 : 81 - 88