The aim of the present paper is to develop a theory of spherical functions for noncommutative Hecke algebras on finite groups. Let G be a finite group, K a subgroup and (θ,V)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\theta ,V)$$\end{document} an irreducible, unitary K-representation. After a careful analysis of Frobenius reciprocity, we are able to introduce an orthogonal basis in the commutant of IndKGV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {Ind}_K^GV$$\end{document}, and an associated Fourier transform. Then we translate our results in the corresponding Hecke algebra, an isomorphic algebra in the group algebra of G. Again a complete Fourier analysis is developed. As particular cases, we obtain some classical results of Curtis and Fossum on the irreducible characters. Finally, we develop a theory of Gelfand–Tsetlin bases for Hecke algebras.