Induced representations and harmonic analysis on finite groups

被引:0
|
作者
Fabio Scarabotti
Filippo Tolli
机构
[1] Università degli Studi di Roma “La Sapienza”,Dipartimento SBAI
[2] Università Roma TRE,Dipartimento di Matematica e Fisica
来源
关键词
Induced representation; Frobenius reciprocity; Fourier transform; Hecke algebra; Spherical function; Gelfand–Tsetlin basis; Primary 20C15l; Secondary 20C08; 43A90;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present paper is to develop a theory of spherical functions for noncommutative Hecke algebras on finite groups. Let G be a finite group, K a subgroup and (θ,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta ,V)$$\end{document} an irreducible, unitary K-representation. After a careful analysis of Frobenius reciprocity, we are able to introduce an orthogonal basis in the commutant of IndKGV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Ind}_K^GV$$\end{document}, and an associated Fourier transform. Then we translate our results in the corresponding Hecke algebra, an isomorphic algebra in the group algebra of G. Again a complete Fourier analysis is developed. As particular cases, we obtain some classical results of Curtis and Fossum on the irreducible characters. Finally, we develop a theory of Gelfand–Tsetlin bases for Hecke algebras.
引用
收藏
页码:937 / 965
页数:28
相关论文
共 50 条