Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems

被引:0
|
作者
Fatih Ecevit
Yassine Boubendir
Akash Anand
Souaad Lazergui
机构
[1] Boğaziçi University,Department of Mathematics
[2] New Jersey Institute of Technology,Department of Mathematical Sciences
[3] University Heights,Department of Mathematics and Statistics
[4] Indian Institute of Technology Kanpur,undefined
来源
Numerische Mathematik | 2022年 / 150卷
关键词
High-frequency scattering; Integral equations; Frequency independent solutions; 65N38; 78M35; 35P25; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the design of two different classes of Galerkin boundary element methods for the solution of high-frequency sound-hard scattering problems in the exterior of two-dimensional smooth convex scatterers. We prove in this paper that both methods require a small increase (in the order of kϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^\epsilon $$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}) in the number of degrees of freedom to guarantee frequency independent precisions with increasing wavenumber k. In addition, the accuracy of the numerical solutions are independent of frequency provided sufficiently many terms in the asymptotic expansion are incorporated into the integral equation formulation. Numerical results validating O(kϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^\epsilon )$$\end{document} algorithms are presented.
引用
收藏
页码:803 / 847
页数:44
相关论文
共 50 条
  • [21] A finite element-based fictitious domain decomposition method for the fast solution of partially axisymmetric sound-hard acoustic scattering problems
    Hetmaniuk, U
    Farhat, C
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2003, 39 (08) : 707 - 725
  • [22] Prediction of sound level at high-frequency bands by means of a simplified boundary element method
    Kim, JK
    Ih, JG
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 112 (06): : 2645 - 2655
  • [23] APPROXIMATE METHODS IN HIGH-FREQUENCY SCATTERING
    JONES, DS
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 239 (1218): : 338 - 348
  • [24] Local Multiple Traces Formulation for High-Frequency Scattering Problems by Spectral Elements
    Jerez-Hanckes, Carlos
    Pinto, Jose
    Tournier, Simon
    [J]. SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2014), 2016, 23 : 73 - 82
  • [25] Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering
    Chandler-Wilde, Simon N.
    Graham, Ivan G.
    Langdon, Stephen
    Spence, Euan A.
    [J]. ACTA NUMERICA, 2012, 21 : 89 - 305
  • [26] Boundary perturbation methods for high-frequency acoustic scattering: Shallow periodic gratings
    Nicholls, David P.
    Reitich, Fernando
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 123 (05): : 2531 - 2541
  • [27] SHIFT OF THE SHADOW BOUNDARY IN HIGH-FREQUENCY SCATTERING
    ZWORSKI, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) : 141 - 156
  • [28] A fast hybrid Galerkin method for high-frequency acoustic scattering
    Li, Song-Hua
    Xiang, Shuhuang
    Xian, Jun
    [J]. APPLICABLE ANALYSIS, 2017, 96 (10) : 1698 - 1712
  • [29] Sound shielding simulation by coupled discontinuous Galerkin and fast boundary element methods
    Proskurov, S.
    Ewert, R.
    Lummer, M.
    Moessner, M.
    Delfs, J. W.
    [J]. ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 1690 - 1705
  • [30] SOUND SCATTERING BY IDEAL SPHEROIDS IN HIGH-FREQUENCY LIMIT
    KLESHCHE.AA
    [J]. SOVIET PHYSICS ACOUSTICS-USSR, 1974, 19 (05): : 447 - 449