Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems

被引:0
|
作者
Fatih Ecevit
Yassine Boubendir
Akash Anand
Souaad Lazergui
机构
[1] Boğaziçi University,Department of Mathematics
[2] New Jersey Institute of Technology,Department of Mathematical Sciences
[3] University Heights,Department of Mathematics and Statistics
[4] Indian Institute of Technology Kanpur,undefined
来源
Numerische Mathematik | 2022年 / 150卷
关键词
High-frequency scattering; Integral equations; Frequency independent solutions; 65N38; 78M35; 35P25; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the design of two different classes of Galerkin boundary element methods for the solution of high-frequency sound-hard scattering problems in the exterior of two-dimensional smooth convex scatterers. We prove in this paper that both methods require a small increase (in the order of kϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^\epsilon $$\end{document} for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}) in the number of degrees of freedom to guarantee frequency independent precisions with increasing wavenumber k. In addition, the accuracy of the numerical solutions are independent of frequency provided sufficiently many terms in the asymptotic expansion are incorporated into the integral equation formulation. Numerical results validating O(kϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^\epsilon )$$\end{document} algorithms are presented.
引用
收藏
页码:803 / 847
页数:44
相关论文
共 50 条
  • [1] Spectral Galerkin boundary element methods for high-frequency sound-hard scattering problems
    Ecevit, Fatih
    Boubendir, Yassine
    Anand, Akash
    Lazergui, Souaad
    [J]. NUMERISCHE MATHEMATIK, 2022, 150 (03) : 803 - 847
  • [2] Galerkin Boundary Element Methods for High-Frequency Multiple-Scattering Problems
    Fatih Ecevit
    Akash Anand
    Yassine Boubendir
    [J]. Journal of Scientific Computing, 2020, 83
  • [3] Galerkin Boundary Element Methods for High-Frequency Multiple-Scattering Problems
    Ecevit, Fatih
    Anand, Akash
    Boubendir, Yassine
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [4] Frequency-adapted Galerkin boundary element methods for convex scattering problems
    Fatih Ecevit
    Hasan Çağan Özen
    [J]. Numerische Mathematik, 2017, 135 : 27 - 71
  • [5] Frequency-adapted Galerkin boundary element methods for convex scattering problems
    Ecevit, Fatih
    Ozen, Hasan Cagan
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (01) : 27 - 71
  • [6] Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics
    Chaillat, Stephanie
    Darbas, Marion
    Le Louer, Frederique
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 341 : 429 - 446
  • [7] A Galerkin boundary element method for a high frequency scattering problem
    Chandler-Wildel, S
    Langdon, S
    Ritter, L
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 257 - 262
  • [8] Galerkin boundary element methods for electromagnetic scattering
    Buffa, A
    Hiptmair, R
    [J]. TOPICS IN COMPUTATIONAL WAVE PROPAGATION: DIRECT AND INVERSE PROBLEMS, 2003, 31 : 83 - 124
  • [9] A Galerkin boundary element method for high frequency scattering by convex polygons
    Chandler-Wilde, S. N.
    Langdon, S.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 610 - 640
  • [10] Active acoustic cloaking and illusions of sound-hard bodies using the boundary element method
    Lin, Cikai
    Liu, Daipei
    Eggler, Daniel
    Kessissoglou, Nicole
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (03): : 1803 - 1812