CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses

被引:0
|
作者
Zikun Yang
Chen Wang
Linxi Liu
Atlas Khan
Annie Lee
Badri Vardarajan
Richard Mayeux
Krzysztof Kiryluk
Iuliana Ionita-Laza
机构
[1] Columbia University,Department of Biostatistics
[2] Columbia University,Division of Nephrology Department of Medicine College of Physicians and Surgeons
[3] University of Pittsburgh,Department of Statistics
[4] Columbia University,Department of Neurology College of Physicians and Surgeons
来源
Nature Genetics | 2023年 / 55卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fine-mapping is commonly used to identify putative causal variants at genome-wide significant loci. Here we propose a Bayesian model for fine-mapping that has several advantages over existing methods, including flexible specification of the prior distribution of effect sizes, joint modeling of summary statistics and functional annotations and accounting for discrepancies between summary statistics and external linkage disequilibrium in meta-analyses. Using simulations, we compare performance with commonly used fine-mapping methods and show that the proposed model has higher power and lower false discovery rate (FDR) when including functional annotations, and higher power, lower FDR and higher coverage for credible sets in meta-analyses. We further illustrate our approach by applying it to a meta-analysis of Alzheimer’s disease genome-wide association studies where we prioritize putatively causal variants and genes.
引用
收藏
页码:1057 / 1065
页数:8
相关论文
共 50 条
  • [21] GENOME-WIDE FINE-MAPPING IMPROVES IDENTIFICATION OF CAUSAL VARIANTS
    Zeng, Jian
    Wu, Yang
    Zheng, Zhili
    Thibaut, Loic
    Goddard, Michael
    Wray, Naomi
    Visscher, Peter
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 12 - 13
  • [22] Genome-wide association meta-analyses for happiness, satisfaction with life and wellbeing; the sequel
    Bartels, Meike
    Okbay, Aysu
    Derringer, Jaime
    Baselmans, Bart
    De Neve, Jan-Emmanuel
    Rietveld, Cornelius
    Cesarini, David
    Krueger, Bob
    Benjamin, Daniel
    Koellinger, Philipp
    BEHAVIOR GENETICS, 2015, 45 (06) : 642 - 642
  • [23] Multiple Platelet Aggregation Genes Are Identified by Genome-wide Association Meta-analyses
    Johnson, Andrew D.
    Yanek, Lisa R.
    Chen, Ming-Huei
    Kraja, Aldi T.
    Larson, Martin G.
    Lin, Rosa
    Tofler, Geoffrey H.
    Becker, Diane M.
    Yang, Qiong
    Province, Michael A.
    O'Donnell, Christopher J.
    Becker, Lewis C.
    CIRCULATION, 2009, 120 (18) : S588 - S588
  • [24] Cross-Ancestry Genome-Wide Association Meta-Analyses of Uterine Fibroids
    Hellwege, Jacklyn N.
    Kim, Jeewoo
    Williams, Ariel
    Noh, Hannah
    Jones, Sarah H.
    Ruiz-Narvaez, Edward A.
    Wise, Lauren A.
    Palmer, Julie
    Connolly, John
    Khan, Atlas
    Abbass, Mohammad
    Rasmussen-Torvik, Laura
    Kottyan, Leah
    Wei, Wei-Qi
    Edwards, Todd L.
    Edwards, Digna R. Velez
    JOURNAL OF WOMENS HEALTH, 2023, 32 (11) : A14 - A14
  • [25] A Framework to Maximise Genetic Diversity in Genome-Wide Association Study Meta-Analyses
    Yap, Chuan Fu
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2024, 48 (07) : 393 - 394
  • [26] Power considerations for λ inflation factor in meta-analyses of genome-wide association studies
    Georgiopoulos, Georgios
    Evangelou, Evangelos
    GENETICS RESEARCH, 2016, 98
  • [27] Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes
    Chen, Jingchun
    Loukola, Anu
    Gillespie, Nathan A.
    Peterson, Roseann
    Jia, Peilin
    Riley, Brien
    Maes, Hermine
    Dick, Daniella M.
    Kendler, Kenneth S.
    Damaj, M. Imad
    Miles, Michael F.
    Zhao, Zhongming
    Li, Ming D.
    Vink, Jacqueline M.
    Minica, Camelia C.
    Willemsen, Gonneke
    Boomsma, Dorret I.
    Qaiser, Beenish
    Madden, Pamela A. F.
    Korhonen, Tellervo
    Jousilahti, Pekka
    Hallfors, Jenni
    Gelernter, Joel
    Kranzler, Henry R.
    Sherva, Richard
    Farrer, Lindsay
    Maher, Brion
    Vanyukov, Michael
    Taylor, Michelle
    Ware, Jenifer J.
    Munafo, Marcus R.
    Lutz, Sharon M.
    Hokanson, John E.
    Gu, Fangyi
    Landi, Maria T.
    Caporaso, Neil E.
    Hancock, Dana B.
    Gaddis, Nathan C.
    Baker, Timothy B.
    Bierut, Laura J.
    Johnson, Eric O.
    Chenoweth, Meghan
    Lerman, Caryn
    Tyndale, Rachel
    Kaprio, Jaakko
    Chen, Xiangning
    NICOTINE & TOBACCO RESEARCH, 2020, 22 (06) : 900 - 909
  • [28] Reproduction and In-Depth Evaluation of Genome-Wide Association Studies and Genome-Wide Meta-analyses Using Summary Statistics
    Niu, Yao-Fang
    Ye, Chengyin
    He, Ji
    Han, Fang
    Guo, Long-Biao
    Zheng, Hou-Feng
    Chen, Guo-Bo
    G3-GENES GENOMES GENETICS, 2017, 7 (03): : 943 - 952
  • [29] Discovery and fine-mapping of kidney function loci in first genome-wide association study in Africans
    Fatumo, Segun
    Chikowore, Tinashe
    Kalyesubula, Robert
    Nsubuga, Rebecca N.
    Asiki, Gershim
    Nashiru, Oyekanmi
    Seeley, Janet
    Crampin, Amelia C.
    Nitsch, Dorothea
    Smeeth, Liam
    Kaleebu, Pontiano
    Burgess, Stephen
    Nyirenda, Moffat
    Franceschini, Nora
    Morris, Andrew P.
    Tomlinson, Laurie
    Newton, Robert
    HUMAN MOLECULAR GENETICS, 2021, 30 (16) : 1559 - 1568
  • [30] Fine-mapping of antipsychotic response genome-wide association studies reveals novel regulatory mechanisms
    Ovenden, Ellen S.
    Drogemoller, Britt I.
    van der Merwe, Lize
    Chiliza, Bonginkosi
    Asmal, Laila
    Emsley, Robin A.
    Warnich, Louise
    PHARMACOGENOMICS, 2017, 18 (02) : 105 - 120