Harmonic analysis and the Riemann-Roch theorem

被引:0
|
作者
D. V. Osipov
A. N. Parshin
机构
[1] Steklov Mathematical Institute RAS,
来源
Doklady Mathematics | 2011年 / 84卷
关键词
DOKLADY Mathematic; Algebraic Surface; Poisson Summation Formula; Smooth Projective Curve; ROCH Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:826 / 829
页数:3
相关论文
共 50 条
  • [1] Harmonic analysis and the Riemann-Roch theorem
    Osipov, D. V.
    Parshin, A. N.
    [J]. DOKLADY MATHEMATICS, 2011, 84 (03) : 826 - 829
  • [2] The Riemann-Roch Theorem
    Popescu-Pampu, Patrick
    [J]. WHAT IS THE GENUS?, 2016, 2162 : 43 - 44
  • [3] On the theorem of Riemann-Roch
    Maxwell, EA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 : 26 - 34
  • [4] A Riemann-Roch theorem
    Das, Mrinal Kanti
    Mandal, Satya
    [J]. JOURNAL OF ALGEBRA, 2006, 301 (01) : 148 - 164
  • [5] An application of the Riemann-Roch theorem
    ShiKun Wang
    HuiPing Zhang
    [J]. Science in China Series A: Mathematics, 2008, 51 : 765 - 772
  • [6] An application of the Riemann-Roch theorem
    Wang ShiKun
    Zhang HuiPing
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 765 - 772
  • [7] RIEMANN-ROCH THEOREM BY DESINGULARIZATION
    ANGENIOL, B
    ELZEIN, F
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04): : 385 - 400
  • [8] An application of the Riemann-Roch theorem
    WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM
    AMSS
    Chinese Academy of Sciences
    Beijing 100080
    China
    2 School of Information
    Renmin University of China
    Beijing 100872
    [J]. Science China Mathematics, 2008, (04) : 765 - 772
  • [10] A Riemann-Roch theorem for hypermaps
    Cangelmi, Leonardo
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1444 - 1448