The Riemann-Roch Theorem

被引:0
|
作者
Popescu-Pampu, Patrick [1 ]
机构
[1] Univ Lille 1, UFR Math, Villeneuve Dascq, France
来源
WHAT IS THE GENUS? | 2016年 / 2162卷
关键词
D O I
10.1007/978-3-319-42312-8_16
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
引用
收藏
页码:43 / 44
页数:2
相关论文
共 50 条
  • [1] On the theorem of Riemann-Roch
    Maxwell, EA
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 : 26 - 34
  • [2] A Riemann-Roch theorem
    Das, Mrinal Kanti
    Mandal, Satya
    [J]. JOURNAL OF ALGEBRA, 2006, 301 (01) : 148 - 164
  • [3] An application of the Riemann-Roch theorem
    ShiKun Wang
    HuiPing Zhang
    [J]. Science in China Series A: Mathematics, 2008, 51 : 765 - 772
  • [4] An application of the Riemann-Roch theorem
    Wang ShiKun
    Zhang HuiPing
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 765 - 772
  • [5] RIEMANN-ROCH THEOREM BY DESINGULARIZATION
    ANGENIOL, B
    ELZEIN, F
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04): : 385 - 400
  • [6] An application of the Riemann-Roch theorem
    WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM
    AMSS
    Chinese Academy of Sciences
    Beijing 100080
    China
    2 School of Information
    Renmin University of China
    Beijing 100872
    [J]. Science China Mathematics, 2008, (04) : 765 - 772
  • [8] A Riemann-Roch theorem for hypermaps
    Cangelmi, Leonardo
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1444 - 1448
  • [9] AN ARITHMETIC RIEMANN-ROCH THEOREM
    GILLET, H
    SOULE, C
    [J]. INVENTIONES MATHEMATICAE, 1992, 110 (03) : 473 - 543
  • [10] Harmonic analysis and the Riemann-Roch theorem
    D. V. Osipov
    A. N. Parshin
    [J]. Doklady Mathematics, 2011, 84 : 826 - 829