Mössbauer studies of baotite and bafertisite

被引:0
|
作者
Isamu Shinno
Zhe Li
机构
来源
Hyperfine Interactions | 1998年 / 116卷
关键词
Thin Film; Silicate; Ionic Radius; Isomer Shift; Silicate Mineral;
D O I
暂无
中图分类号
学科分类号
摘要
The Mössbauer effect was used to study silicate minerals of baotite and bafertisite at 298 K and 95 K. Each spectrum of baotite at 298 K and 95 K consists of two doublets, and they are contributed from Fe2+ and Fe3+ in the octahedral Ti‐sites, respectively. Each spectrum of bafertisite at 298 K and 95 K is composed of two doublets, and they are mainly caused by Fe2+ in the octahedral Fe(I)‐ and Fe(II)‐sites, respectively. The average effective ionic radii of the Ti sites in baotite and the Fe(I)‐ and Fe(II)‐sites in bafertisite were estimated based on the correlation of the isomer shifts with the average effective ionic radii in silicates, and they are 0.56 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\AA} $$ \end{document}, 0.73 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\AA} $$ \end{document} and 0.73 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\AA} $$ \end{document}, respectively.
引用
收藏
页码:189 / 196
页数:7
相关论文
共 50 条
  • [31] Mössbauer studies of materials used to immobilise industrial wastes
    S. D. Forder
    P. A. Bingham
    O. J. McGann
    M. C. Stennett
    N. C. Hyatt
    [J]. Hyperfine Interactions, 2013, 217 : 83 - 90
  • [32] Mössbauer studies of GdFe2 − xHfx alloys
    I. A. Al-Omari
    A. Gismelseed
    H. Widatallah
    M. Elzain
    A. Al-Rawas
    A. Yousif
    [J]. Hyperfine Interactions, 2008, 187 : 93 - 100
  • [33] Provenance Studies for Prehistoric Obsidian by Using Mössbauer Spectroscopy
    Young Rang Uhm
    Gwang-Min Sun
    Mi-Eun Jin
    Yong-Joo Jwa
    Jae Yeon Seo
    Hyunkyung Choi
    Chul Sung Kim
    [J]. Journal of the Korean Physical Society, 2020, 77 : 253 - 257
  • [34] Mössbauer studies of ferrihydrite for Fischer-Tropsch catalysts
    Jung Tae Lim
    Chul Sung Kim
    Dong Hyun Chun
    Ji Chan Park
    [J]. Journal of the Korean Physical Society, 2016, 68 : 302 - 305
  • [35] Mössbauer spectroscopy studies of57Fe in diamond
    K. Bharuth-Ram
    [J]. Hyperfine Interactions, 2003, 151-152 : 21 - 30
  • [36] Mössbauer diffraction and interference studies of polycrystalline metals and alloys
    B. Fultz
    T.A. Stephens
    [J]. Hyperfine Interactions, 1998, 113 : 199 - 217
  • [37] Mössbauer power
    Benjamin Martindale
    [J]. Nature Catalysis, 2022, 5 : 750 - 750
  • [38] Mössbauer Spectroscopy
    Long, Gary J.
    Grandjean, Fernande
    [J]. Comprehensive Coordination Chemistry III, 2021, 1-9 : 129 - 159
  • [39] Mössbauer studies of interactions between titanium atoms dissolved in iron
    Robert Konieczny
    Rafał Idczak
    Jan Chojcan
    [J]. Hyperfine Interactions, 2013, 219 : 121 - 127
  • [40] Mössbauer studies of Fe-doped HoMnO3
    Kim, Sung Baek
    Kim, Sam Jin
    Park, J.-G.
    Cheong, S.-W.
    Kim, Chul Sung
    [J]. Journal of Applied Physics, 2006, 99 (08):