Strong and electroweak interactions and their unification with non-commutative space-time

被引:0
|
作者
X.-G. He
机构
[1] Institute of Theoretical Physics,
[2] Academia Sinica,undefined
[3] Beijing 100080,undefined
[4] China ,undefined
[5] Department of Physics,undefined
[6] National Taiwan University,undefined
[7] Taipei 10764,undefined
[8] Taiwan ,undefined
关键词
Field Theory; Quantum Field Theory; Higgs Boson; Systematic Study; Unique Feature;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum field theories based on non-commutative space-time (NCQFT) have been extensively studied recently. However no NCQFT model which can uniquely describe the strong and electroweak interactions has been constructed. This prevents one to make a consistent and systematic study of non-commutative space-time. In this work we construct a NCQFT model based on the trinification gauge group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$SU(3)_C\times SU(3)_{{L}}\times SU(3)_{R}$\end{document}. A unique feature of this model, that all matter fields (fermions and Higgs bosons) are assigned to (anti-) fundamental representations of the factor SU(3) groups, allows us to construct a NCQFT model for strong and electroweak interactions and their unification without ambiguities. This model provides an example which allows one to make a consistent and systematic study of non-commutative space-time phenomenology. We also comment on some related issues regarding extensions to E6 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(3)_C\times U(3)_{L}\times U(3)_{R}$\end{document} models.
引用
收藏
页码:557 / 560
页数:3
相关论文
共 50 条
  • [31] Non-commutative space-time of doubly special relativity theories
    Kowalski-Glikman, J
    Nowak, S
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2003, 12 (02): : 299 - 315
  • [32] Newton's law in an effective non-commutative space-time
    Gruppuso, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09): : 2039 - 2042
  • [33] Non-commutative space-time algebra and the spectrum of its operators
    Wess, J
    [J]. SUPERSYMMETRIES AND QUANTUM SYMMETRIES, 1999, 524 : 373 - 379
  • [34] Cosmic microwave background polarization in non-commutative space-time
    S. Tizchang
    S. Batebi
    M. Haghighat
    R. Mohammadi
    [J]. The European Physical Journal C, 2016, 76
  • [35] Holomorphic realization of non-commutative space-time and gauge invariance
    Mir-Kasimov, RM
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 283 - 286
  • [36] Maximal acceleration in a Lorentz invariant non-commutative space-time
    E. Harikumar
    Suman Kumar Panja
    Vishnu Rajagopal
    [J]. The European Physical Journal Plus, 137
  • [37] Cosmic microwave background polarization in non-commutative space-time
    Tizchang, S.
    Batebi, S.
    Haghighat, M.
    Mohammadi, R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (09):
  • [38] The scalar wave equation in a non-commutative spherically symmetric space-time
    Di Grezia, Elisabetta
    Esposito, Giampiero
    Miele, Gennaro
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2008, 5 (01) : 33 - 47
  • [39] Hydrogen and muonic hydrogen atomic spectra in non-commutative space-time
    M. Haghighat
    M. Khorsandi
    [J]. The European Physical Journal C, 2015, 75
  • [40] Neutrino dipole moments and charge radii in non-commutative space-time
    Minkowski, P
    Schupp, P
    Trampetic, J
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2004, 37 (01): : 123 - 128