Factorization and Dilation Problems for Completely Positive Maps on von Neumann Algebras

被引:0
|
作者
Uffe Haagerup
Magdalena Musat
机构
[1] University of Copenhagen,Department of Mathematical Sciences
来源
关键词
Tracial State; Embedding Problem; Normal Faithful State; Noncommutative Setting; Asymptotic Quantum;
D O I
暂无
中图分类号
学科分类号
摘要
We study factorization and dilation properties of Markov maps between von Neumann algebras equipped with normal faithful states, i.e., completely positive unital maps which preserve the given states and also intertwine their automorphism groups. The starting point for our investigation has been the question of existence of non-factorizable Markov maps, as formulated by C. Anantharaman-Delaroche. We provide simple examples of non-factorizable Markov maps on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(\mathbb{C})}$$\end{document} for all n ≥ 3, as well as an example of a one-parameter semigroup (T(t))t≥0 of Markov maps on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_4(\mathbb{C})}$$\end{document} such that T(t) fails to be factorizable for all small values of t > 0. As applications, we solve in the negative an open problem in quantum information theory concerning an asymptotic version of the quantum Birkhoff conjecture, as well as we sharpen the existing lower bound estimate for the best constant in the noncommutative little Grothendieck inequality.
引用
收藏
页码:555 / 594
页数:39
相关论文
共 50 条