Affine actions with Hitchin linear part

被引:0
|
作者
Jeffrey Danciger
Tengren Zhang
机构
[1] The University of Texas at Austin,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Properly discontinuous actions of a surface group by affine automorphisms of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} were shown to exist by Danciger–Gueritaud–Kassel. We show, however, that if the linear part of an affine surface group action is in the Hitchin component, then the action fails to be properly discontinuous. The key case is that of linear part in SO(n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathsf {S}}}{{\mathsf {O}}}(n,n-1)$$\end{document}, so that the affine action is by isometries of a flat pseudo-Riemannian metric on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} of signature (n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,n-1)$$\end{document}. Here, the translational part determines a deformation of the linear part into PSO(n,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSO}(n,n)$$\end{document}-Hitchin representations and the crucial step is to show that such representations are not Anosov in PSL(2n,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSL}(2n,{\mathbb {R}})$$\end{document} with respect to the stabilizer of an n-plane. We also prove a negative curvature analogue of the main result, that the action of a surface group on the pseudo-Riemannian hyperbolic space of signature (n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,n-1)$$\end{document} by a PSO(n,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSO}(n,n)$$\end{document}-Hitchin representation fails to be properly discontinuous.
引用
收藏
页码:1369 / 1439
页数:70
相关论文
共 50 条
  • [11] SDRE based stabilization of the affine control system with the stationary linear part
    Dmitriev, Mikhail
    Murzabekov, Zainelkhriet
    Makarov, Dmitry
    Mirzakhmedova, Gulbanu
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 739 - 743
  • [12] On the Zariski closure of the linear part of a properly discontinuous group of affine transformations
    Abels, H
    Margulis, GA
    Soifer, GA
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 60 (02) : 315 - 344
  • [13] On affine actions of discrete groups
    Zeghib, A
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (02) : 641 - &
  • [14] EXAMPLES OF NONPROPER AFFINE ACTIONS
    DRUMM, TA
    MICHIGAN MATHEMATICAL JOURNAL, 1992, 39 (03) : 435 - 442
  • [15] Group Actions on Affine Cones
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    AFFINE ALGEBRAIC GEOMETRY: THE RUSSELL FESTSCHRIFT, 2011, 54 : 123 - 163
  • [16] UNIPOTENT ACTIONS ON AFFINE SPACE
    SNOW, DM
    TOPOLOGICAL METHODS IN ALGEBRAIC TRANSFORMATION GROUPS, 1989, 80 : 165 - 176
  • [17] On affine actions of Lie groups
    Abdelghani Zeghib
    Mathematische Zeitschrift, 1998, 227 : 245 - 262
  • [18] Affine actions on real trees
    Liousse, I
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (02) : 401 - 429
  • [19] On affine actions of Lie groups
    Zeghib, A
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (02) : 245 - 262
  • [20] Affine and degenerate affine BMW algebras: actions on tensor space
    Daugherty, Zajj
    Ram, Arun
    Virk, Rahbar
    SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02): : 611 - 653