Affine actions with Hitchin linear part

被引:0
|
作者
Jeffrey Danciger
Tengren Zhang
机构
[1] The University of Texas at Austin,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Properly discontinuous actions of a surface group by affine automorphisms of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} were shown to exist by Danciger–Gueritaud–Kassel. We show, however, that if the linear part of an affine surface group action is in the Hitchin component, then the action fails to be properly discontinuous. The key case is that of linear part in SO(n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathsf {S}}}{{\mathsf {O}}}(n,n-1)$$\end{document}, so that the affine action is by isometries of a flat pseudo-Riemannian metric on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} of signature (n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,n-1)$$\end{document}. Here, the translational part determines a deformation of the linear part into PSO(n,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSO}(n,n)$$\end{document}-Hitchin representations and the crucial step is to show that such representations are not Anosov in PSL(2n,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSL}(2n,{\mathbb {R}})$$\end{document} with respect to the stabilizer of an n-plane. We also prove a negative curvature analogue of the main result, that the action of a surface group on the pseudo-Riemannian hyperbolic space of signature (n,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,n-1)$$\end{document} by a PSO(n,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PSO}(n,n)$$\end{document}-Hitchin representation fails to be properly discontinuous.
引用
收藏
页码:1369 / 1439
页数:70
相关论文
共 50 条
  • [1] AFFINE ACTIONS WITH HITCHIN LINEAR PART
    Danciger, Jeffrey
    Zhang, Tengren
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (05) : 1369 - 1439
  • [2] Rationality of quotients by linear actions of affine groups
    BOGOMOLOV Fedor
    BHNING Christian
    GRAF VON BOTHMER Hans-Christian
    Science China(Mathematics), 2011, 54 (08) : 1521 - 1532
  • [3] Rationality of quotients by linear actions of affine groups
    Bogomolov, Fedor
    Boehning, Christian
    Graf Von Bothmer, Hans-Christian
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (08) : 1521 - 1532
  • [4] Rationality of quotients by linear actions of affine groups
    Fedor Bogomolov
    Christian Böhning
    Hans-Christian Graf Von Bothmer
    Science China Mathematics, 2011, 54 : 1521 - 1532
  • [5] The linear-affine functional equation and group actions
    Fripertinger, H
    Reich, L
    Schwaiger, J
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (1-2): : 209 - 235
  • [6] Affine Structures, Wreath Products and Free Affine Actions on Linear Non-Archimedean Trees
    Rourke, Shane O.
    JOURNAL OF LIE THEORY, 2022, 32 (01) : 157 - 174
  • [7] LINEAR-MODELS FOR REDUCTIVE GROUP-ACTIONS ON AFFINE QUADRICS
    DOEBELI, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (04): : 505 - 531
  • [8] Properly discontinuous groups of affine transformations with orthogonal linear part
    Abels, H
    Margulis, GA
    Soifer, GA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 253 - 258
  • [9] AFFINE ANOSOV ACTIONS
    HURDER, S
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (03) : 561 - 575
  • [10] SEMISIMPLE GROUP-ACTIONS ON THE 3-DIMENSIONAL AFFINE SPACE ARE LINEAR
    KRAFT, H
    POPOV, VL
    COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) : 466 - 479