The present study evaluates the performance of Coupled Model Intercomparison Phase 6 (CMIP6) of three global climate models for spatiotemporal projections of temperature and precipitation over Afghanistan. Climate patterns were analyzed for two future time slices, i.e., mid-century (2030–2059) and late century (2070–2099) with reference to historical periods (1985–2014). Three CMIP6 models (i.e., CNRM-CM6-1, EC-Earth3-CC, MRI-ESM2-0) and their ensemble under shared socioeconomic pathways (SSP) 2–4.5 and 5–8.5 scenarios are implemented. The results of the temporal analysis indicate that mean daily rainfall of mid-century and late century will increase by 3%, and 8% under SSP2-4.5 and 4%, and 15% under SSP5-8.5 scenarios, respectively. Similarly, the mean daily temperature of mid-century and late century is projected to increase by 13% and 22% under SSP2-4.5 and 17%, and 41% under SSP5-8.5 scenarios, respectively. The extreme rainfalls (95th percentile of cumulative distribution fuction) increase by 9–15% and 4–8% in the long-term and short-term future, respectively, which implies increasing flood frequency. In spatial analysis, each model indicated different precipitation trend. It is highly likely that the country’s northeast will experience an increase in precipitation, whereas the southern region will witness a decrease. The temperature of all three models suggest increasing trend throughout the country with greater changes over the late-century period under SSP5-8.5. The findings of this study provide detailed insights into the performance of CMIP6 models over Afghanistan and may serve as useful guidance for any policymaking regarding climate change in different regions of the country.