On Belyi pairs over arbitrary fields

被引:0
|
作者
Dremov V.A. [1 ]
Vashevnik A.M. [1 ]
机构
[1] Moscow State University,
关键词
Prime Number; Positive Characteristic; Algebraic Curve; Abstract Graph; Black Vertex;
D O I
10.1007/s10958-008-0058-4
中图分类号
学科分类号
摘要
The main goal of this article is to extend Grothendieck's dessins d'enfant theory to arbitrary fields. In this paper, the definitions of a Belyi pair in positive characteristic and primes of bad reduction are given. We consider the graph K 3,3. This abstract graph corresponds to three different dessins. For each dessin we find the Belyi pair and the positive characteristics for which this pair exists. The set of primes of bad reduction is also given. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:1187 / 1190
页数:3
相关论文
共 50 条
  • [21] Factoring polynomials over arbitrary finite fields
    Lange, T
    Winterhof, A
    THEORETICAL COMPUTER SCIENCE, 2000, 234 (1-2) : 301 - 308
  • [22] Harmonic representatives in homology over arbitrary fields
    Catanzaro M.J.
    Vose B.
    Journal of Applied and Computational Topology, 2023, 7 (3) : 643 - 670
  • [23] TWISTED GROUP ALGEBRAS OVER ARBITRARY FIELDS
    REYNOLDS, WF
    ILLINOIS JOURNAL OF MATHEMATICS, 1971, 15 (01) : 91 - &
  • [24] The minrank of random graphs over arbitrary fields
    Alon, Noga
    Balla, Igor
    Gishboliner, Lior
    Mond, Adva
    Mousset, Frank
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 235 (01) : 63 - 77
  • [25] INTERMEDIATE JACOBIANS AND RATIONALITY OVER ARBITRARY FIELDS
    Département de Mathématiques et Applications, École Normale Supérieure et CNRS, 45 rue d’Ulm, Paris
    75230 Cedex 05, France
    不详
    93430, France
    arXiv, 1600,
  • [26] THE PRINCIPAL AXIS THEOREM OVER ARBITRARY FIELDS
    MORNHINWEG, D
    SHAPIRO, DB
    VALENTE, KG
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (08): : 749 - 754
  • [27] Extensions of nilpotent blocks over arbitrary fields
    Zhou, Yuanyang
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (02) : 351 - 371
  • [28] Orthogonal sequences of polynomials over arbitrary fields
    Blackburn, SR
    JOURNAL OF NUMBER THEORY, 1998, 68 (01) : 99 - 111
  • [29] Products of Differences over Arbitrary Finite Fields
    Murphy, Brendan
    Petridis, Giorgis
    DISCRETE ANALYSIS, 2018,
  • [30] Algebras of minimal rank over arbitrary fields
    Bläser, M
    STACS 2003, PROCEEDINGS, 2003, 2607 : 403 - 414