Commercial carbon anode material surface-modified by spinel lithium titanate for fast lithium-ion interaction

被引:0
|
作者
Lung-Hao Hu
机构
[1] National Sun Yat-sen University,Department of Mechanical and Electro
来源
MRS Communications | 2020年 / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This research utilizes anatase TiO2 incorporated with lithium salt via a simple wet physical method to surface-modified the commercial graphite to form the lithium titanate/graphite composite coated with an amorphous carbon layer on its surface (the double core-shell structure) to enhance its surface conductivity. This double core-shell structure provides a stable specific capacity about 280 mAh/g under the high current density, 2.25 A/g with 15% capacity retention decay. Its intercalation potential is below 1 V that is much lower than that of 1.55 V, the intercalation potential of spinel Li4Ti5O12, to make higher power and energy density for a full cell.
引用
收藏
页码:141 / 146
页数:5
相关论文
共 50 条
  • [41] Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery
    Lee, Seokwon
    Kwon, Seokhun
    Kim, Kangmin
    Kang, Hyunil
    Ko, Jang Myoun
    Choi, Wonseok
    MOLECULES, 2021, 26 (22):
  • [42] An anode material of CrN for lithium-ion batteries
    Sun, Qian
    Fu, Zheng-Wen
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (08) : A189 - A193
  • [43] Nanotubes as anode material for lithium-ion batteries
    Loutfy, RO
    Hossain, S
    Moravsky, A
    Saleh, M
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 341 - 355
  • [44] Carbon-coated Si as a lithium-ion battery anode material
    Yoshio, M
    Wang, HY
    Fukuda, K
    Umeno, T
    Dimov, N
    Ogumi, Z
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) : A1598 - A1603
  • [45] Carbon Derived from Sucrose as Anode Material for Lithium-Ion Batteries
    Rahul Kumar
    K. Anish Raj
    Sagar Mita
    Parag Bhargava
    Journal of Electronic Materials, 2019, 48 : 7389 - 7395
  • [46] Carbon Derived from Sucrose as Anode Material for Lithium-Ion Batteries
    Kumar, Rahul
    Anish Raj, K.
    Mita, Sagar
    Bhargava, Parag
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (11) : 7389 - 7395
  • [47] Silicon nanowires with a carbon nanofiber branch as lithium-ion anode material
    Song, Taeseup
    Lee, Dong Hyun
    Kwon, Moon Seok
    Choi, Jae Man
    Han, Hyungkyu
    Doo, Seok Gwang
    Chang, Hyuk
    Park, Won Il
    Sigmund, Wolfgang
    Kim, Hansu
    Paik, Ungyu
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) : 12619 - 12621
  • [48] Use of strontium titanate (SrTiO3) as an anode material for lithium-ion batteries
    Johnson, Derek C.
    Prieto, Amy L.
    JOURNAL OF POWER SOURCES, 2011, 196 (18) : 7736 - 7741
  • [49] Graphene Aerogel Modified Carbon Paper as Anode for Lithium-Ion Batteries
    Angelopoulou, Pinelopi
    Vrettos, Katerina
    Georgakilas, Vasilios
    Avgouropoulos, George
    CHEMISTRYSELECT, 2020, 5 (09): : 2719 - 2724
  • [50] Lithium antimonite: A new class of anode material for lithium-ion battery
    Kundu, Manab
    Mahanty, Sourindra
    Basu, Rajendra Nath
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (07) : 1389 - 1392