Lsm7 phase-separated condensates trigger stress granule formation

被引:0
|
作者
Michelle Lindström
Lihua Chen
Shan Jiang
Dan Zhang
Yuan Gao
Ju Zheng
Xinxin Hao
Xiaoxue Yang
Arpitha Kabbinale
Johannes Thoma
Lisa C. Metzger
Deyuan Y. Zhang
Xuefeng Zhu
Huisheng Liu
Claes M. Gustafsson
Björn M. Burmann
Joris Winderickx
Per Sunnerhagen
Beidong Liu
机构
[1] University of Gothenburg,Department of Chemistry and Molecular Biology
[2] Guangzhou Laboratory,Wallenberg Centre for Molecular and Translational Medicine
[3] Functional Biology,College of Artificial Intelligence
[4] KU Leuven,Department of Medical Biochemistry and Cell Biology
[5] University of Gothenburg,undefined
[6] Shenyang Aerospace University,undefined
[7] Shenbei New District,undefined
[8] University of Gothenburg,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
引用
收藏
相关论文
共 50 条
  • [1] Lsm7 phase-separated condensates trigger stress granule formation
    Lindstrom, Michelle
    Chen, Lihua
    Jiang, Shan
    Zhang, Dan
    Gao, Yuan
    Zheng, Ju
    Hao, Xinxin
    Yang, Xiaoxue
    Kabbinale, Arpitha
    Thoma, Johannes
    Metzger, Lisa C.
    Zhang, Deyuan Y.
    Zhu, Xuefeng
    Liu, Huisheng
    Gustafsson, Claes M.
    Burmann, Bjorn M.
    Winderickx, Joris
    Sunnerhagen, Per
    Liu, Beidong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Phase-separated biomolecular condensates for biocatalysis
    Lim, Samuel
    Clark, Douglas S.
    TRENDS IN BIOTECHNOLOGY, 2024, 42 (04) : 496 - 509
  • [3] Characterizing the metabolomes of phase-separated condensates
    Nature Chemical Biology, 2024, 20 : 273 - 274
  • [4] Characterizing the metabolomes of phase-separated condensates
    Dumelie, Jason G.
    Jaffrey, Samie R.
    NATURE CHEMICAL BIOLOGY, 2024, 20 (03) : 273 - 274
  • [5] Formation and stability of coreless vortex dipoles in phase-separated binary condensates
    Gautam, S.
    Muruganandam, P.
    Angom, D.
    PHYSICS LETTERS A, 2013, 377 (05) : 378 - 386
  • [6] Fundamental Aspects of Phase-Separated Biomolecular Condensates
    Zhou, Huan-Xiang
    Kota, Divya
    Qin, Sanbo
    Prasad, Ramesh
    CHEMICAL REVIEWS, 2024,
  • [7] Function and Regulation of Phase-Separated Biological Condensates
    Li, Xiao-Han
    Chavali, Pavithra L.
    Pancsa, Rita
    Chavali, Sreenivas
    Babu, M. Madan
    BIOCHEMISTRY, 2018, 57 (17) : 2452 - 2461
  • [8] Chemical reactions regulated by phase-separated condensates
    Laha, Sudarshana
    Bauermann, Jonathan
    Juelicher, Frank
    Michaels, Thomas C. T.
    Weber, Christoph A.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [9] A brief guideline for studies of phase-separated biomolecular condensates
    Yifei Gao
    Xi Li
    Pilong Li
    Yi Lin
    Nature Chemical Biology, 2022, 18 : 1307 - 1318
  • [10] A brief guideline for studies of phase-separated biomolecular condensates
    Gao, Yifei
    Li, Xi
    Li, Pilong
    Lin, Yi
    NATURE CHEMICAL BIOLOGY, 2022, 18 (12) : 1307 - 1318