Chemical reactions regulated by phase-separated condensates

被引:0
|
作者
Laha, Sudarshana [1 ,2 ]
Bauermann, Jonathan [1 ,2 ]
Juelicher, Frank [1 ,2 ,3 ]
Michaels, Thomas C. T. [4 ,5 ]
Weber, Christoph A. [6 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Ctr Syst Biol Dresden, Pfotenhauerstr 108, D-01307 Dresden, Germany
[3] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[4] Swiss Fed Inst Technol, Inst Biochem, Dept Biol, Otto Stern Weg 3, CH-8093 Zurich, Switzerland
[5] Swiss Fed Inst Technol, Bringing Mat Life Initiat, Zurich, Switzerland
[6] Univ Augsburg, Inst Phys, Fac Math Nat Sci & Mat Engn, Univ Str 1, D-86159 Augsburg, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
LIQUID; DROPLETS; COMPARTMENTALIZATION;
D O I
10.1103/PhysRevResearch.6.043092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase-separated liquid condensates can spatially organize and thereby regulate chemical processes. However, the physicochemical mechanisms underlying such regulation remain elusive as the intramolecular interactions responsible for phase separation give rise to a coupling between diffusion and chemical reactions at nondilute conditions. Here, we derive a theoretical framework that decouples the phase separation of scaffold molecules from the reaction kinetics of diluted clients. As a result, phase volume and client partitioning coefficients become control parameters, which enables us to dissect the impact of phase-separated condensates on chemical reactions. We apply this framework to two chemical processes and show how condensates affect the yield of reversible chemical reactions and the initial rate of a simple assembly process. In both cases, we find an optimal condensate volume at which the respective chemical reaction property is maximal. Our work can be applied to experimentally quantify how condensed phases alter chemical processes in systems biology and unravel the mechanisms of how biomolecular condensates regulate biochemistry in living cells.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Phase-separated biomolecular condensates for biocatalysis
    Lim, Samuel
    Clark, Douglas S.
    TRENDS IN BIOTECHNOLOGY, 2024, 42 (04) : 496 - 509
  • [2] Characterizing the metabolomes of phase-separated condensates
    Nature Chemical Biology, 2024, 20 : 273 - 274
  • [3] Characterizing the metabolomes of phase-separated condensates
    Dumelie, Jason G.
    Jaffrey, Samie R.
    NATURE CHEMICAL BIOLOGY, 2024, 20 (03) : 273 - 274
  • [4] DIFFUSION AND CHEMICAL-REACTIONS IN PHASE-SEPARATED MEMBRANES
    VAZ, WLC
    BIOPHYSICAL CHEMISTRY, 1994, 50 (1-2) : 139 - 145
  • [5] Fundamental Aspects of Phase-Separated Biomolecular Condensates
    Zhou, Huan-Xiang
    Kota, Divya
    Qin, Sanbo
    Prasad, Ramesh
    CHEMICAL REVIEWS, 2024,
  • [6] Function and Regulation of Phase-Separated Biological Condensates
    Li, Xiao-Han
    Chavali, Pavithra L.
    Pancsa, Rita
    Chavali, Sreenivas
    Babu, M. Madan
    BIOCHEMISTRY, 2018, 57 (17) : 2452 - 2461
  • [7] A brief guideline for studies of phase-separated biomolecular condensates
    Yifei Gao
    Xi Li
    Pilong Li
    Yi Lin
    Nature Chemical Biology, 2022, 18 : 1307 - 1318
  • [8] A brief guideline for studies of phase-separated biomolecular condensates
    Gao, Yifei
    Li, Xi
    Li, Pilong
    Lin, Yi
    NATURE CHEMICAL BIOLOGY, 2022, 18 (12) : 1307 - 1318
  • [9] Methods to Study Phase-Separated Condensates and the Underlying Molecular Interactions
    Ganser, Laura R.
    Myong, Sua
    TRENDS IN BIOCHEMICAL SCIENCES, 2020, 45 (11) : 1004 - 1005
  • [10] 'RNA modulation of transport properties and stability in phase-separated condensates
    Tejedor, Andres R.
    Garaizar, Adiran
    Ramirez, Jorge
    Espinosa, Jorge R.
    BIOPHYSICAL JOURNAL, 2021, 120 (23) : 5169 - 5186