Morawetz Estimate for Linearized Gravity in Schwarzschild

被引:0
|
作者
Lars Andersson
Pieter Blue
Jinhua Wang
机构
[1] Albert Einstein Institute,The School of Mathematics and the Maxwell Institute
[2] University of Edinburgh,School of Mathematical Sciences
[3] Xiamen University,undefined
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The equations governing the perturbations of the Schwarzschild metric satisfy the Regge–Wheeler–Zerilli–Moncrief system. Applying the technique introduced in Andersson and Blue (Ann Math 182(2):787–853, 2015), we prove an integrated local energy decay estimate for both the Regge–Wheeler and Zerilli equations. In these proofs, we use some constants that are computed numerically. Furthermore, we make use of the rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^p$$\end{document} hierarchy estimates (Dafermos and Rodnianski, in: Exner (ed) XVIth international congress on mathematical physics, World Scientic, London, pp 421–433, 2009; Schlue in Anal PDE 6:515–600, 2013) to prove that both the Regge–Wheeler and Zerilli variables decay as t-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-\frac{3}{2}}$$\end{document} in fixed regions of r.
引用
收藏
页码:761 / 813
页数:52
相关论文
共 50 条
  • [21] LORENTZ VIOLATION IN THE LINEARIZED GRAVITY
    Ferrari, A. F.
    Petrov, A. Yu.
    PROCEEDINGS OF THE FIFTH MEETING ON CPT AND LORENTZ SYMMETRY, 2011, : 267 - 270
  • [22] Linearized gravity and gauge conditions
    Aksteiner, Steffen
    Andersson, Lars
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (06)
  • [23] Linearized gravity in brane backgrounds
    Giddings, SB
    Katz, E
    Randall, L
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (03):
  • [24] Linearized gravity with matter time
    Ali, Masooma
    Husain, Viqar
    Rahmati, Shohreh
    Ziprick, Jonathan
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (10)
  • [25] Lorentz violation in the linearized gravity
    Ferrari, A. F.
    Gomes, A.
    Nascimento, J. R.
    Passos, E.
    Petrov, A. Yu.
    da Silva, A. J.
    PHYSICS LETTERS B, 2007, 652 (04) : 174 - 180
  • [26] Linearized gravity about a brane
    Collins, H
    Holdom, B
    PHYSICAL REVIEW D, 2000, 62 (12) : 1 - 10
  • [27] Duality in linearized gravity and holography
    Bakas, Ioannis
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (06)
  • [28] INTERACTION MORAWETZ ESTIMATE AND A SIMPLIFIED PROOF ON THE ENERGY SCATTERING FOR HARTREE EQUAITONS
    徐桂香
    范佳
    Acta Mathematica Scientia, 2011, 31 (01) : 15 - 21
  • [29] INTERACTION MORAWETZ ESTIMATE AND A SIMPLIFIED PROOF ON THE ENERGY SCATTERING FOR HARTREE EQUAITONS
    Xu Guixiang
    Yuan Jia
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (01) : 15 - 21
  • [30] Schwarzschild solution in brane induced gravity
    Gabadadze, G
    Iglesias, A
    PHYSICAL REVIEW D, 2005, 72 (08)