Morawetz Estimate for Linearized Gravity in Schwarzschild

被引:0
|
作者
Lars Andersson
Pieter Blue
Jinhua Wang
机构
[1] Albert Einstein Institute,The School of Mathematics and the Maxwell Institute
[2] University of Edinburgh,School of Mathematical Sciences
[3] Xiamen University,undefined
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The equations governing the perturbations of the Schwarzschild metric satisfy the Regge–Wheeler–Zerilli–Moncrief system. Applying the technique introduced in Andersson and Blue (Ann Math 182(2):787–853, 2015), we prove an integrated local energy decay estimate for both the Regge–Wheeler and Zerilli equations. In these proofs, we use some constants that are computed numerically. Furthermore, we make use of the rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^p$$\end{document} hierarchy estimates (Dafermos and Rodnianski, in: Exner (ed) XVIth international congress on mathematical physics, World Scientic, London, pp 421–433, 2009; Schlue in Anal PDE 6:515–600, 2013) to prove that both the Regge–Wheeler and Zerilli variables decay as t-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-\frac{3}{2}}$$\end{document} in fixed regions of r.
引用
收藏
页码:761 / 813
页数:52
相关论文
共 50 条