Solving 2D Linear Isotropic Elastodynamics by Means of Scalar Potentials: A New Challenge for Finite Elements

被引:0
|
作者
Jorge Albella Martínez
Sébastien Imperiale
Patrick Joly
Jerónimo Rodríguez
机构
[1] Universidade de Santiago de Compostela,Departamento de Matemática Aplicada
[2] Inria,undefined
[3] Université Paris-Saclay,undefined
[4] LMS,undefined
[5] Ecole Polytechnique,undefined
[6] CNRS,undefined
[7] Université Paris-Saclay,undefined
[8] UMA,undefined
[9] Ensta,undefined
[10] CNRS,undefined
[11] Université Paris-Saclay,undefined
[12] IMAT,undefined
[13] Universidade de Santiago de Compostela,undefined
[14] ITMATI,undefined
[15] Campus Sur,undefined
来源
关键词
Elastic wave propagation; Helmholtz decomposition; Potentials; Stability of the evolution problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present a method for the computation of numerical solutions of 2D homogeneous isotropic elastodynamics equations by solving scalar wave equations. These equations act on the potentials of a Helmholtz decomposition of the displacement field and are decoupled inside the propagation domain. We detail how these equations are coupled at the boundary depending on the nature of the boundary condition satisfied by the displacement field. After presenting the case of rigid boundary conditions, that presents no specific difficulty, we tackle the challenging case of free surface boundary conditions that presents severe stability issues if a straightforward approach is used. We introduce an adequate functional framework as well as a time domain mixed formulation to circumvent these issues. Numerical results confirm the stability of the proposed approach.
引用
收藏
页码:1832 / 1873
页数:41
相关论文
共 50 条