On the Growth Rate of a Linear Stochastic Recursion with Markovian Dependence

被引:0
|
作者
Dan Pirjol
Lingjiong Zhu
机构
[1] Institute for Physics and Nuclear Engineering,School of Mathematics
[2] University of Minnesota-Twin Cities,undefined
来源
关键词
Linear stochastic recursion; Lyapunov exponent; Phase transitions; Critical exponent; Large deviations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the linear stochastic recursion xi+1=aixi+bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i+1} = a_{i}x_{i}+b_{i}$$\end{document} where the multipliers ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} are random and have Markovian dependence given by the exponential of a standard Brownian motion and bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{i}$$\end{document} are i.i.d. positive random noise independent of ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}$$\end{document}. Using large deviations theory we study the growth rates (Lyapunov exponents) of the positive integer moments λq=limn→∞1nlogE[(xn)q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _q = \lim _{n\rightarrow \infty } \frac{1}{n} \log \mathbb {E}[(x_n)^q]$$\end{document} with q∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {Z}_+$$\end{document}. We show that the Lyapunov exponents λq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _q$$\end{document} exist, under appropriate scaling of the model parameters, and have non-analytic behavior manifested as a phase transition. We study the properties of the phase transition and the critical exponents using both analytic and numerical methods.
引用
下载
收藏
页码:1354 / 1388
页数:34
相关论文
共 50 条
  • [41] Linear Quadratic Nash Differential Games of Stochastic Singular Systems with Markovian Jumps
    Liu, Bin
    Wang, Xin
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (03) : 651 - 660
  • [42] Linear Quadratic Nash Differential Games of Stochastic Singular Systems with Markovian Jumps
    Bin Liu
    Xin Wang
    Acta Mathematica Vietnamica, 2020, 45 : 651 - 660
  • [43] Indefinite Stochastic linear quadratic control with Markovian jumps in infinite time horizon
    Li, X
    Zhou, XY
    Rami, MA
    JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (2-3) : 149 - 175
  • [44] On hybrid control of a class of stochastic non-linear Markovian switching systems
    Dong, Yuewu
    Sun, Jitao
    AUTOMATICA, 2008, 44 (04) : 990 - 995
  • [45] Finite-Time Stochastic Stability and Stabilization of Linear Markovian Jump Systems
    Zuo, Zhiqiang
    Liu, Yi
    Wang, Yijing
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 3174 - 3177
  • [46] Stochastic stability analysis of Markovian jump linear systems with incomplete transition descriptions
    Sun, Hui-Jie
    Zhang, Ying
    Wu, Ai-Guo
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (14): : 1974 - 1982
  • [47] Stochastic stability of linear time-delay system with Markovian jumping parameters
    Benjelloun, K
    Boukas, EK
    MATHEMATICAL PROBLEMS IN ENGINEERING, 1997, 3 (03) : 187 - 201
  • [48] RELATIONS BETWEEN STOCHASTIC STABILITY OF MARKOVIAN JUMP LINEAR SYSTEMS AND STABILIZATION OF DETERMINISTIC SWITCHED LINEAR SYSTEMS
    Colaneri, Patrizio
    de Souza, Valeska Martins
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2008, 7 (02) : 179 - 191
  • [49] The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping
    Dragan, V
    Morozan, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 665 - 675
  • [50] Stochastic controllability of linear interest rate models
    Petersen, MA
    Raubenheimer, H
    van der Walt, FC
    van Rooy, HF
    CURRENT TRENDS IN OPERATOR THEORY AND ITS APPLICATIONS, 2004, 149 : 493 - 515