On the Growth Rate of a Linear Stochastic Recursion with Markovian Dependence

被引:0
|
作者
Dan Pirjol
Lingjiong Zhu
机构
[1] Institute for Physics and Nuclear Engineering,School of Mathematics
[2] University of Minnesota-Twin Cities,undefined
来源
关键词
Linear stochastic recursion; Lyapunov exponent; Phase transitions; Critical exponent; Large deviations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the linear stochastic recursion xi+1=aixi+bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{i+1} = a_{i}x_{i}+b_{i}$$\end{document} where the multipliers ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} are random and have Markovian dependence given by the exponential of a standard Brownian motion and bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{i}$$\end{document} are i.i.d. positive random noise independent of ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}$$\end{document}. Using large deviations theory we study the growth rates (Lyapunov exponents) of the positive integer moments λq=limn→∞1nlogE[(xn)q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _q = \lim _{n\rightarrow \infty } \frac{1}{n} \log \mathbb {E}[(x_n)^q]$$\end{document} with q∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {Z}_+$$\end{document}. We show that the Lyapunov exponents λq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _q$$\end{document} exist, under appropriate scaling of the model parameters, and have non-analytic behavior manifested as a phase transition. We study the properties of the phase transition and the critical exponents using both analytic and numerical methods.
引用
下载
收藏
页码:1354 / 1388
页数:34
相关论文
共 50 条