Invariant sets for families of linear and nonlinear discrete systems with bounded disturbances

被引:0
|
作者
A. V. Kuntsevich
V. M. Kuntsevich
机构
[1] National Academy of Sciences,V.M. Glushkov Institute of Cybernetics
[2] National Academy of Sciences and National Space Agency,Institute of Space Research
来源
关键词
Remote Control; Linear Discrete System; Bounded Disturbance; Invariant Ellipsoid; Vector Argument;
D O I
暂无
中图分类号
学科分类号
摘要
We use difference inclusions to describe the dynamics of a family of nonlinear discrete systems subject to bounded disturbances. For a family of linear discrete systems, we get an analytic solution of the problem of finding the invariant set, and for families of nonlinear systems, we propose an iterative process that finds their invariant set and converges with the speed of a geometric progression. We also provide illustrative examples.
引用
收藏
页码:83 / 96
页数:13
相关论文
共 50 条
  • [41] Local Stabilization of Nonlinear Discrete-Time Systems Subject to Amplitude Bounded Disturbances
    Klug, Michael
    Castelan, Eugenio B.
    Coutinho, Daniel
    IFAC PAPERSONLINE, 2017, 50 (01): : 8472 - 8477
  • [42] Reachable Set Bounding for Linear Discrete-Time Systems with Delays and Bounded Disturbances
    That, Nguyen D.
    Nam, Phan T.
    Ha, Q. P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (01) : 96 - 107
  • [43] Emulating time varying nonlinear uncertainties and disturbances in linear time invariant systems
    Horen, Y.
    Kuperman, A.
    Vainer, Z.
    Tapuchi, S.
    Averbukh, M.
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2012, 88 (12): : 1499 - 1507
  • [44] Discrete nonlinear systems: on the admissible nonlinear disturbances
    Rachik, M
    Lhous, M
    Tridane, A
    Abdelhak, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2001, 338 (05): : 631 - 650
  • [45] On the Convergence of the Backward Reachable Sets of Robust Controlled Invariant Sets For Discrete-time Linear Systems
    Liu, Zexiang
    Ozay, Necmiye
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4270 - 4275
  • [46] Localization of invariant compact sets of discrete systems
    Kanatnikov, A. N.
    Korovin, S. K.
    Krishchenko, A. P.
    DOKLADY MATHEMATICS, 2010, 81 (02) : 326 - 328
  • [47] Localization of invariant compact sets of discrete systems
    A. N. Kanatnikov
    S. K. Korovin
    A. P. Krishchenko
    Doklady Mathematics, 2010, 81 : 326 - 328
  • [48] POSITIVELY INVARIANT FAMILIES OF SETS FOR INTERCONNECTED AND TIME-DELAY DISCRETE-TIME SYSTEMS
    Rakovic, S. V.
    Gielen, R. H.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) : 2261 - 2283
  • [49] Computing invariant sets of discrete-time nonlinear systems via state immersion
    Wang, Zheming
    Jungers, Raphael M.
    Ong, Chong-Jin
    IFAC PAPERSONLINE, 2020, 53 (02): : 5505 - 5510
  • [50] POSITIVELY INVARIANT POLYHEDRAL-SETS OF DISCRETE-TIME LINEAR-SYSTEMS
    BITSORIS, G
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 47 (06) : 1713 - 1726