Catching a molecule at the air-water interface: Dynamic pore array for molecular recognition

被引:0
|
作者
Katsuhiko Ariga
Takashi Nakanishi
Yukiko Terasaka
Jun-ichi Kikuchi
机构
[1] National Institute for Materials Science (NINS),Supermolecules Group
[2] Nara Institute of Science and Technology (NAIST),Graduate School of Materials Science
来源
关键词
Molecular recognition; Air-water interface; Monolayer; Pore; Dynamic;
D O I
暂无
中图分类号
学科分类号
摘要
As a soft and flexible porous structure, a pore array of a steroid cyclophane SC(OH), which consists of the rigid 1,6,20,25-tetraaza[6.1.6.1]paracyclophane ring connected to four steroid moieties (cholic acid) through flexible L-lysine spacers, was prepared at the air-water interface. As confirmed by surface pressure (π)-molecular area (A) isotherms, transition between open conformation and cavity conformation of the SC(OH) molecule was reversibly induced upon repeated compression and expansion of its monolayer at pH 11 where amino groups of the lysine residues are not fully deprotonated. Capture and release of an aqueous fluorescent guest (TNS) by SC(OH) was observed upon dynamic cavity formation through surface fluorescence spectroscopy. At pH 12, dynamic cavity formation of SC(OH) was sufficiently suppressed, and the capture and release of an aqueous TNS by the monolayer was not virtually observed. Lessened electrostatic repulsion between the SC(OH) molecules due to conversion of ammonium to free amine may prevent the cavity from reopening. The importance of dynamic nature of cavity formation on the guest binding was also proved by control experiments using SC(H), which cannot form cavity conformation at any surface pressures at both pH 11 and 12.
引用
收藏
页码:427 / 430
页数:3
相关论文
共 50 条
  • [31] Sphingomyelin at the air-water interface
    Vaknin, D
    Kelley, MS
    Ocko, BM
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16): : 7697 - 7704
  • [32] ON INSTABILITY OF AN AIR-WATER INTERFACE
    GANGADHA.T
    RAO, NSL
    SEETHARA.K
    INDIAN JOURNAL OF TECHNOLOGY, 1970, 8 (04): : 120 - &
  • [33] Methylglyoxal at the air-water interface
    Wren, Sumi N.
    McWilliams, Laura E.
    Valley, Nicholas A.
    Richmond, Geraldine L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] ON THE INSTABILITY OF AN AIR-WATER INTERFACE
    GANGADHARAIAH T
    LAKSHMANA RAO NS
    KSEETHARAMIAH
    1970, 8 (04): : 120 - 124
  • [35] Molecular behavior of a microbial lipopeptide monolayer at the air-water interface
    Song, Chang-Sheng
    Ye, Ru-Qiang
    Mu, Bo-Zhong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2007, 302 (1-3) : 82 - 87
  • [36] Control of molecular orientation of α-helix in the monolayer at air-water interface
    Doi, T
    Kinoshita, T
    Tsujita, Y
    Yoshimizu, H
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2001, 74 (03) : 421 - 425
  • [37] Reactivity of Undissociated Molecular Nitric Acid at the Air-Water Interface
    Anglada, Josep M.
    Martins-Costa, Marilia T. C.
    Francisco, Joseph S.
    Ruiz-Lopez, Manuel F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) : 453 - 462
  • [38] Dendrimers at the air-water interface: surface dynamics and molecular ordering
    Ahmad, Farhan
    Shin, Kwanwoo
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2006, 3 (2-3) : 353 - 371
  • [39] Anisotropic orientational motion of molecular adsorbates at the air-water interface
    Zimdars, D
    Dadap, JI
    Eisenthal, KB
    Heinz, TF
    JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (17): : 3425 - 3433