Decentralized environmental applications of a smartphone-based method for chemical oxygen demand and color analysis

被引:0
|
作者
Jussara Câmara Cardozo
Inalmar D. Barbosa Segundo
Edney R. V. P. Galvão
Djalma R. da Silva
Elisama V. dos Santos
Carlos A. Martínez-Huitle
机构
[1] Federal University of Rio Grande do Norte,Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry
[2] Federal University of Rio Grande do Norte,Departament of Petroleum Engineering
[3] Federal University of Rio Grande do Norte,School of Science and Technology
[4] UNESP,National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study is focused on a proposal of a smartphone imaging-based quantification for providing a simple and rapid method for the analysis of chemical oxygen demand (COD) and color throughout the use of the HSV and/or RGB model in digital devices. For COD, calibration curves were done based on the theoretical values of potassium biphthalate for a proper comparison between the spectrophotometer and the smartphone techniques. The smartphone camera and application attain an average accuracy higher than the analysis in the spectrophotometer (98.3 and 96.2%, respectively). In the color analysis, it was demonstrated that only the UV–vis bands measurement is not feasible to perform the real abatement of the dye in the water because the limiting concentration that allows obtaining a linear relationship in this equipment related to the dye concentration is about 10 mg L−1. Above this value, the spectrophotometer can not reach the real difference of color in the solution. Meanwhile, the smartphone method by using the camera reaches linearity until 50 mg L−1. From an environmental point of view, smartphones have been used for monitoring several organic and inorganic pollutants, however, no attempts have been published related to their use to evaluate the color and COD during wastewater treatment. Therefore, this investigation also aims to assess the utilization of these methods, for the first time, when high-colored water polluted by methylene blue (MB) was electrochemically treated by using a boron-dopped diamond (BDD) as the anode, with different current densities (j = 30, 45, 60, and 90 mA cm−2). COD and color abatement results clearly showed that different organic matter/color removal efficiencies were achieved, depending on the j used. All the results are aligned with the studies already available in the literature, with the total removal of color in 120 min of electrolysis with 60 and 90 mA cm−2, and almost 80% of COD abatement with the higher j. Moreover, samples of real effluent from beauty salons were compared, with standard deviation varying from only 3 to 40 mg O2 L−1, which is acceptable for COD values close to 2000. Finally, the methods here presented can be a great benefit for public water monitoring policies, since it is cheap and has a decentralized characteristic, given that smartphones are very common and portable devices.
引用
收藏
相关论文
共 50 条
  • [1] Decentralized environmental applications of a smartphone-based method for chemical oxygen demand and color analysis
    Cardozo, Jussara Camara
    Segundo, Inalmar Barbosa D.
    Galvao, Edney R. V. P.
    da Silva, Djalma R.
    dos Santos, Elisama V.
    Martinez-Huitle, Carlos A.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Cost-effective smartphone-based method for low range chemical oxygen demand analysis *
    Segundo, Inalmar D. Barbosa
    Cardozo, Jussara C.
    Castro, Pollyana Souza
    Gondim, Amanda D.
    dos Santos, Elisama V.
    Martinez-Huitle, Carlos A.
    METHODSX, 2023, 11
  • [3] A content analysis of smartphone-based applications for hypertension management
    Kumar, Nilay
    Khunger, Monica
    Gupta, Arjun
    Garg, Neetika
    JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION, 2015, 9 (02) : 130 - 136
  • [4] Smartphone-based colorimetric method for decentralized wastewater treatment monitoring by inexperienced users
    Gusev, Sergei
    Louage, Flor
    Van Hulle, Stijn
    Rousseau, Diederik P. L.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2024, 246
  • [5] Applications of smartphone-based colorimetric biosensors
    Qian S.
    Cui Y.
    Cai Z.
    Li L.
    Biosensors and Bioelectronics: X, 2022, 11
  • [6] Method for in situ acoustic calibration of smartphone-based sound measurement applications
    Aumond, Pierre
    Can, Arnaud
    Rey Gozalo, Guillermo
    Fortin, Nicolas
    Suarez, Enrique
    APPLIED ACOUSTICS, 2020, 166 (166)
  • [7] Smartphone-based fundus imaging: applications and adapters
    Jansen, Linus G.
    Schultz, Thomas
    Holz, Frank G.
    Finger, Robert P.
    Wintergerst, Maximilian W. M.
    OPHTHALMOLOGE, 2022, 119 (02): : 112 - 126
  • [8] Smartphone-based fundus imaging: applications and adapters
    Jansen, Linus G.
    Schultz, Thomas
    Holz, Frank G.
    Finger, Robert P.
    Wintergerst, Maximilian W. M.
    OPHTHALMOLOGIE, 2022, 119 (02): : 112 - 126
  • [9] Smartphone-based optical analysis systems
    Di Nonno, Sarah
    Ulber, Roland
    ANALYST, 2021, 146 (09) : 2749 - 2768
  • [10] SMARTPHONE-BASED URINE STRIP ANALYSIS
    Stathopoulou, T.
    Anthimopoulos, M.
    Beuleke, M.
    Lutolf, S.
    Uehlinger, D.
    Arampatzis, S.
    Mougiakakou, S.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2018, 20 : A117 - A118