Improved online algorithms for the batch scheduling of equal-length jobs with incompatible families to maximize the weighted number of early jobs

被引:0
|
作者
Wenjie Li
Jinjiang Yuan
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Optimization Letters | 2014年 / 8卷
关键词
Scheduling; Online algorithms; Preemption-restart; Incompatible families;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the online scheduling of equal-length jobs with incompatible families on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} identical batch machines. Each job has a release time, a deadline and a weight. Each batch machine can process up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} jobs (which come from the same family) simultaneously as a batch, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} is called the capacity of the machines. Our goal is to determine a preemption-restart schedule which maximizes the weighted number of early jobs. For this problem, Li et al. (Inf Process Lett 112:503–508, 2012) provided an online algorithm of competitive ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+2\sqrt{2}$$\end{document} for both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=\infty $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<\infty $$\end{document}. In this paper, we study two special cases of this problem. For the case that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document}, we first present a lower bound 2, and then provide an online algorithm with a competitive ratio of 3 for both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=\infty $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<\infty $$\end{document}. For the case in which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=3$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=\infty $$\end{document} and all jobs come from a common family, we present an online algorithm with a competitive ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(8+2\sqrt{15})/3\approx 5.249$$\end{document}.
引用
收藏
页码:1691 / 1706
页数:15
相关论文
共 50 条
  • [31] Scheduling equal-length jobs with delivery times on identical processors
    Vakhania, N
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (06) : 715 - 728
  • [32] Online scheduling of bounded length jobs to maximize throughput
    Duerr, Christoph
    Jez, Lukasz
    Nguyen Kim Thang
    [J]. JOURNAL OF SCHEDULING, 2012, 15 (05) : 653 - 664
  • [33] Online Scheduling of Bounded Length Jobs to Maximize Throughput
    Duerr, Christoph
    Jez, Lukasz
    Nguyen, Kim Thang
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, 2010, 5893 : 116 - +
  • [34] Online scheduling of bounded length jobs to maximize throughput
    Christoph Dürr
    Łukasz Jeż
    Nguyen Kim Thang
    [J]. Journal of Scheduling, 2012, 15 : 653 - 664
  • [35] Multiobjective scheduling of jobs with incompatible families on parallel batch machines
    Reichelt, Dirk
    Moench, Lars
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2006, 3906 : 209 - 221
  • [36] An exact algorithm for the preemptive single machine scheduling of equal-length jobs
    Fomin, Artem
    Goldengorin, Boris
    [J]. Computers and Operations Research, 2022, 142
  • [37] Online scheduling with chain precedence constraints of equal-length jobs on parallel machines to minimize makespan
    Chai, Xing
    Li, Wenhua
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (02) : 472 - 492
  • [38] Online scheduling with chain precedence constraints of equal-length jobs on parallel machines to minimize makespan
    Xing Chai
    Wenhua Li
    [J]. Journal of Combinatorial Optimization, 2018, 36 : 472 - 492
  • [39] An exact algorithm for the preemptive single machine scheduling of equal-length jobs
    Fomin, Artem
    Goldengorin, Boris
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2022, 142
  • [40] Batch scheduling to minimize the weighted number of tardy jobs
    Erel, Erdal
    Ghosh, Jay B.
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2007, 53 (03) : 394 - 400