Accurate prediction of lumbar microdecompression level with an automated MRI grading system

被引:0
|
作者
Brandon L. Roller
Robert D. Boutin
Tadhg J. O’Gara
Ziyad O. Knio
Amir Jamaludin
Josh Tan
Leon Lenchik
机构
[1] Wake Forest School of Medicine,Department of Radiology
[2] Stanford University,Department of Radiology
[3] Wake Forest School of Medicine,Department of Orthopaedic Surgery
[4] Wake Forest School of Medicine,Department of Engineering Science
[5] University of Oxford,undefined
来源
Skeletal Radiology | 2021年 / 50卷
关键词
Machine learning; Automated diagnosis; MRI; Low back pain; Lumbar degenerative disc disease; Spinal stenosis; Microdecompression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:69 / 78
页数:9
相关论文
共 50 条
  • [31] Could automated machine-learned MRI grading aid epidemiological studies of lumbar spinal stenosis? Validation within the Wakayama spine study
    Yuyu Ishimoto
    Amir Jamaludin
    Cyrus Cooper
    Karen Walker-Bone
    Hiroshi Yamada
    Hiroshi Hashizume
    Hiroyuki Oka
    Sakae Tanaka
    Noriko Yoshimura
    Munehito Yoshida
    Jill Urban
    Timor Kadir
    Jeremy Fairbank
    BMC Musculoskeletal Disorders, 21
  • [32] MRI Features as Prognostic Factors in Myxofibrosarcoma: Proposal of MRI Grading System
    Spinnato, Paolo
    Clinca, Roberta
    Vara, Giulio
    Cesari, Marilena
    Ponti, Federico
    Facchini, Giancarlo
    Longhi, Alessandra
    Donati, Davide Maria
    Bianchi, Giuseppe
    Sambri, Andrea
    ACADEMIC RADIOLOGY, 2021, 28 (11) : 1524 - 1529
  • [33] Accurate prediction of the needle depth required for successful lumbar puncture
    Chong, Sze Yee
    Chong, Lee Ai
    Ariffin, Hany
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2010, 28 (05): : 603 - 606
  • [34] Modified Pfirrmann grading system for lumbar intervertebral disc degeneration
    Griffith, James F.
    Wang, Yi-Xiang J.
    Antonio, Gregory E.
    Choi, Kai Chow
    Yu, Alfred
    Ahuja, Anil T.
    Leung, Ping Chung
    SPINE, 2007, 32 (24) : E708 - E712
  • [35] Automated diagnosis and grading of lumbar intervertebral disc degeneration based on a modified YOLO framework
    Wang, Aobo
    Wang, Tianyi
    Liu, Xingyu
    Fan, Ning
    Yuan, Shuo
    Du, Peng
    Zou, Congying
    Chen, Ruiyuan
    Xi, Yu
    Gu, Zhao
    Song, Hongxing
    Fei, Qi
    Zhang, Yiling
    Zang, Lei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 13
  • [36] An effective automated grading system for HCC in biopsy images
    Lai, Y. H.
    Huang, P. W.
    Lin, P. L.
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 395 - +
  • [37] Automated Grading System using Natural Language Processing
    Rokade, Amit
    Patil, Bhushan
    Rajani, Sana
    Revandkar, Surabhi
    Shedge, Rajashree
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1123 - 1127
  • [38] Automated strawberry grading system based on image processing
    Liming, Xu
    Yanchao, Zhao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2010, 71 : S32 - S39
  • [39] Automated fruit grading system using image processing
    Njoroge, JB
    Ninomiya, K
    Kondo, N
    Toita, H
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1346 - 1351
  • [40] An Automated System for the Grading of Diabetic Maculopathy in Fundus Images
    Akram, Muhammad Usman
    Akhtar, Mahmood
    Javed, M. Younus
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT IV, 2012, 7666 : 36 - 43